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Abstract. In this paper we apply a variational method to three extremal problems for
hyperbolically convex functions posed by Ma and Minda and Pommerenke [7, 16]. We first

consider the problem of extremizing Re
f(z)

z
. We determine the minimal value and give a

new proof of the maximal value previously determined by Ma and Minda. We also describe
the geometry of the hyperbolically convex functions f(z) = αz + a2z2 + a3z3 + . . . which
maximize Re a3.

1. Introduction

A classical problem in Geometric Function Theory is to maximize the value of a given functional
over a given class of analytic functions. Recent papers have extended this problem and its study
to functionals on hyperbolically convex functions. In particular, these functions were studied
by Beardon in [6], Ma and Minda in [7, 8], Solynin in [17, 18], Mej́ıa and Pommerenke in
[9, 10, 11, 12, 13] and Mej́ıa, Pommerenke, and Vasil′ev in [14]. This flurry of activity has
produced a number of open problems and conjectures.

Recently, in [2, 4] we developed a variational technique for hyperbolically convex functions
based on Julia’s variational formula and applied it to several of these problems and conjectures.

For z ∈ C, let Re{z} = real part z and let D = {z ∈ C : |z| < 1}. With the metric
λ(z)|dz| = 2|dz|

1−|z|2 , D forms the Poincaré model of the hyperbolic plane. In this model, hyper-
bolic geodesics in D are subarcs of Euclidean circles which intersect ∂D orthogonally. A set
S ⊂ D is hyperbolically convex if for any two points z1 and z2 in S, the hyperbolic geodesic
connecting z1 to z2 lies entirely inside of S. Important examples of hyperbolically convex
regions are the fundamental domains of Fuchsian groups.

We will say that a function f : D → D is hyperbolically convex if f is analytic and univalent on
D and if f(D) is hyperbolically convex. The set of all hyperbolically convex functions f which
satisfy f(0) = 0, f ′(0) > 0 will be denoted by H.

A hyperbolic polygon is a simply connected subset of D, which contains the origin and which is
bounded by a Jordan curve consisting of a finite collection of hyperbolic geodesics and arcs of
the unit circle. The bounding geodesics will be referred to as proper sides. We will let Hpoly

denote the subset of H of all functions mapping D onto hyperbolic polygons. Further, we will
let Hn denote the subclass of Hpoly of all functions mapping D onto polygons with at most n
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proper sides. It can be shown that Hpoly is dense in H. Moreover, H ∪ {0} and Hn ∪ {0}, for
each n, are compact.
Each function f ∈ H satisfies Schwarz’s Lemma and, hence, f ′(0) ≤ 1. For 0 < α ≤ 1, let
Hα = {f ∈ H : f(z) = αz + a2z

2 + a3z
3 + · · · }. As an aside, we note that H1 consists only of

the identity map.
Ma and Minda [7, 8] and Mej́ıa and Pommerenke [9] describe the geometry of the function

kα(z) ≡ 2αz

(1− z) +
√

(1− z)2 + 4α2z

which belongs to Hα and which maps D to a hyperbolic polygon bounded by exactly one proper
side. As a consequence of the normalizations, it can easily be seen that Hα∩H1 consists solely
of kα and its rotations.

Ma and Minda [7] and Pommerenke [16] posed the following three problems for hyperbolically
convex functions, whose solutions did not follow from the techniques in [9, 7, 8, 11, 12, 13] .

Problem 1. Fix 0 < α < 1 and let f ∈ Hα. For z ∈ D \ {0} , find

(1) min
f∈Hα

Re
f(z)

z
.

Problem 2. Fix 0 < α < 1 and let f ∈ Hα with f(z) = αz + a2z
2 + a3z

3 + · · · . Find

(2) max
f∈Hα

Re a3.

Problem 3. Let f ∈ H with f(z) = αz + a2z
2 + a3z

3 + · · · . Find

(3) max
f∈H

Re a3.

Applying the variational methods developed in [2, 4], we have the following resolutions for
Problems 1, 2 and 3.

Theorem 1.1. For any z ∈ D \ {0} and fixed 0 < α < 1, let f ∈ Hα be extremal for

L(f) = Re
f(z)

z
over Hα. Then the extremal value (maximum or minimum) for L over Hα

can be obtained from a hyperbolically convex function f which maps D onto a hyperbolic polygon
with exactly one proper side. Specifically, for z ∈ D \ {0} and 0 < α < 1

max
f∈Hα

Re
f(z)

z
=

kα(r)
r

, r = |z|

and

min
f∈Hα

Re
f(z)

z
=

kα(−r)
−r

, r = |z|.

Theorem 1.2. Fix 0 < α < 1. Then the maximal value for L(f) = Re a3 over Hα is obtained
by a hyperbolically convex function f(z) = αz+a2z

2+a3z
3+· · · which maps D onto a hyperbolic

polygon with at most two proper sides.

Theorem 1.3. The maximal value for L(f) = Re a3 over H is obtained by a hyperbolically
convex function f(z) = αz + a2z

2 + a3z
3 + · · · which maps D onto a hyperbolic polygon with

at most two proper sides.

Remark 1.1. The maximum value of Re f(z)
z for hyperbolically convex functions was first

given using different methods by Ma and Minda [7]. Minda and Ma also observed in [7] that kα

cannot be extremal for (2) when α = 1/2. Hence, the reduction in Theorem 1.2 of the extremal
function to a hyperbolically convex function with two proper sides is best possible.
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Figure 1. The variation produced by “pushing out” a side.

2. Variations for Hpoly

As our primary tool for solving these three problems, we will modify an extension of the Julia
variation as developed by the first author and J. Lewis [5, 3].

Let Ω be a region bounded by a piecewise analytic curve Γ and φ(w) be a positive piecewise
C1 function on Γ, vanishing where Γ is not analytic. Denote the outward pointing unit normal
vector at each point w where Γ is smooth by n(w). For ε near 0, construct a new curve

Γε = {w + εφ(w)n(w) : w ∈ Γ}

and let Ωε be the new region bounded by Γε.

Notice that if ε is sufficiently small and ε > 0, then Γ is “pushed outside” the domain, while
if ε < 0, then Γ is “pushed inside” the domain. With the above notation, we state Julia’s
modification of the Hadamard variational formula; see [5] for details.

Lemma 2.1. Let f be a conformal map from D onto Ω with f(0) = 0, and suppose f has a
continuous extension to ∂D, which we also denote by f . Then, a similarly normalized conformal
map from D onto Ωε is given by

fε(z) = f(z) +
εzf ′(z)

2π

∫
∂D

1 + ξz

1− ξz
dΨ + o(ε),(4)

where dΨ = φ(f(ξ))
|f ′(ξ)| dθ, ξ = eiθ, and the o(ε) term is continuously differentiable in ε for each

z ∈ D. Furthermore, the change in mapping radius between fε and f is given by

(5) ∆mr(fε, f) =
εf ′(0)

2π

∫
∂D

dΨ + o(ε).

Notice the restriction that φ vanish at the points of non-smoothness of ∂Ω is a strong one.
It implies, for example, that while we can vary the sides of a hyperbolic polygon, we cannot
move any of the vertices. However, it follows from the work of the first author and J. Lewis [3]
that such an extended version of the Julia variation is possible (except at internal cusps,
ie., where two sides meet at an angle of measure 2π, which do not occur for hyperbolically
convex polygons). Moreover, they showed that the resulting function will agree with the Julia
variational formula up to o(ε) terms.

In [2, 4], we proved the following two lemmas which describe variations for functions in Hpoly

which preserve hyperbolic convexity. First, if f maps onto a hyperbolically convex polygon Ω
with a side Γ, we can “push” Γ to a nearby geodesic Γε in such a way that the varied function
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Figure 2. The variation produced by pushing in one end of a side.

fε will still be hyperbolically convex. Although the control φ can depend on ε, it was shown
in [2] that the variation in φ can be absorbed into the o(ε) terms. See Figure 1.

Lemma 2.2. Suppose f ∈ Hn and f is not constant. If Γ = f(γ) is a proper side of Ω = f(D),
then for ε sufficiently small there exists a variation fε ∈ Hn which “pushes” Γ either in or out
to a nearby geodesic Γε, where Γε → Γ as ε → 0. Moreover, fε agrees with the Julia Variational
Formula up to o(ε) terms.

If Γ intersects another side Γ∗ at z∗, and z0 ∈ Γ, then we can vary f so as to replace the portion
of Γ between z0 and z∗ with a new geodesic between z0 and some z∗ε ∈ Γ∗. See Figure 2.

Lemma 2.3. Suppose f ∈ Hn, f is not constant, and Γ = f(γ) is a proper side of f(D)
meeting a side Γ∗. Then, there exists a variation fε ∈ Hn+1 which adds a side to f(D) by
pushing one end of Γ to a nearby side Γε. That is, fε(D) is a hyperbolic polygon whose sides
are the same as those of f , except that one end of Γ has been replaced by Γε and Γ∗ has been
shortened. Moreover, fε agrees with the Julia Variational Formula up to o(ε) terms.

Remark 2.1. Notice that in order to maintain hyperbolic convexity, we can only push in the
“end” of a side, that is, a subarc that ends at a vertex of the polygon. However, we can choose
this subarc to be as long, or more importantly, as short, as we choose.

3. Proofs

3.1. Proof of Theorem 1.1. Choose a point z ∈ D \ {0}. We will consider explicitly the
problem of minimizing Re

{
f(z)

z

}
over Hα. The case for maximizing Re

{
f(z)

z

}
over Hα is

analogous.

Let Hn
α = Hα∩Hn. Suppose that f ∈ Hn

α is extremal for (1) over Hn
α for some n ≥ 3 and that

f(D) has at least three proper sides, say Γj , j = 1, 2, 3. Let γj = f−1(Γj), j = 1, 2, 3. For
each side Γj , apply the variation described in Lemma 2.2 to Γj , with control εj = ελj . Let fε

be the varied function obtained by varying each of the three sides Γj , j = 1, 2, 3, of f . From
Lemma 2.1, we have

fε(z)
z

=
f(z)

z
+ ε

3∑
j=1

λj

2π

∫
γj

f ′(z)
1 + ξz

1− ξz
dΨ + o(ε)
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and

∆mr(fε, f) = ε

3∑
j=1

λjα

2π

∫
γj

dΨ + o(ε)

Hence, we can write

L(fε) = L(f) + ε Re


3∑

j=1

λj

2π

∫
γj

f ′(z)
1 + ξz

1− ξz
dΨ + o(ε)

 .

If ∂∆mr(fε,f)
∆ε

∣∣
ε=0

= 0, then fε will also lie in Hn
α for ε sufficiently small. If in addition, ∂L(fε)

∂ε

∣∣
ε=0

is non-zero, then the value of L(fε) can be made smaller than the value of L(f) for some ε
near 0. Thus f cannot be extremal for (1) in Hn

α . Using the above representations for L(fε)
and ∆mr(fε, f) we obtain

(6)
∂L(fε)

∂ε

∣∣∣∣
ε=0

= Re


3∑

j=1

λj

2π

∫
γj

f ′(z)
1 + ξz

1− ξz
dΨ


and

(7)
∂∆mr(fε, f)

∂ε

∣∣∣∣
ε=0

=
3∑

j=1

λjα

2π

∫
γj

dΨ.

Let Q(ξ) = f ′(z) 1+ξz
1−ξz . As dΨ is real valued, we can apply the mean value theorem for integrals

and rewrite (6) as

(8)
∂L(fε)

∂ε

∣∣∣∣
ε=0

=


3∑

j=1

λj

2π
Re Q(ξj)

∫
γj

dΨ


where ξj belongs to the interior of the arc γj .

Since the kernel Q of our integral is bilinear in ξ, it maps ∂D to a circle Λ. Hence, for |z| < 1,
not all three of the points Q(ξj), j = 1, 2, 3, can have the same real part. Without loss of
generality suppose that Re Q(ξ1) > Re Q(ξ2). Then, we can push Γ1 in, Γ2 out (and not vary
Γ3) so as to decrease the value of L(fε) from the value of L(f) within the class Hn

α . Specifically,
choose λ1 < 0 < λ2 (and λ3 = 0) so that ∂∆mr(fε,f)

ε

∣∣
ε=0

= 0 in (7). Then, we have from (8)

∂L(fε)
∂ε

∣∣∣∣
ε=0

= Re Q(ξ1)
λ1

2π

∫
γ1

dΨ + Re Q(ξ2)
λ2

2π

∫
γ2

dΨ(9)

< Re Q(ξ1)
(

λ1

2π

∫
γ1

dΨ +
λ2

2π

∫
γ2

dΨ
)

= 0.

Thus, f is not extremal for L in Hn
α . Consequently, if f is extremal in Hn

α , n ≥ 3, then
f ∈ H2

α ⊂ Hn
α , that is, the extremal f can have at most two proper sides.
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Figure 3. The endpoints of Q(γj), j = 1, 2, must lie on opposite sides of the
line l determined by x = x0 = Re Q(ξ1) = Re Q(ξ2).

We will now argue that f can actually have at most one side using an argument similar to the
Step Down Lemma in [2]. Consider Hn

α , n ≥ 3, and let f be extremal in Hn
α for (1). By the

above argument, f(D) can have at most two sides. Suppose f(D) has exactly two proper sides,
say Γj , j = 1, 2. As above, for each side Γj , apply the variation described in Lemma 2.2 to
Γj , with control εj = ελj . Let fε be the varied function obtained by varying each of the two
sides Γj , j = 1, 2, of f . If in the formulation for ∂L(fε)

∂ε

∣∣
ε=0

in (8), suitably modified to reflect
only moving two sides, Re Q(ξ1) 6= Re Q(ξ2), then the same argument used above eliminates f
from being extremal. So we conclude that Re Q(ξ1) = Re Q(ξ2) = x0. Thus, for each proper
side Γj , j = 1, 2, of f(D), we must have that the image under the kernel Q of the preimage of
one endpoint of Γj lies to the left of the vertical line l determined by x = x0 and the image
under the kernel Q of the preimage of other endpoint Γj lies to the right of l. See Figure 3.

We consider the vertex z0 ∈ Γ1 whose image under Q ◦ f−1 lies to the right of l. Apply the
variation described in Lemma 2.3 at the vertex z0 to add another side to f(D), making sure
the added side is short enough that its image under Q ◦ f−1 still lies completely to the right of
l. At the same time, push the entire side Γ2 out so that the mapping radius is preserved and
fε ∈ H2

α.

By the above variational argument, the newly varied function has a smaller value for L. But
this means f cannot be extremal. Thus, the extremal function for L in Hn

α , n ≥ 3, cannot
have two proper sides. It follows therefore that the extremal function in Hn

α can have at most
one proper side.

Since H2
α ⊂ Hn

α for all n ≥ 3, if f is extremal in Hn
α and is an element of H2

α, it must be
extremal in H2

α as well. Thus, the extremal element in H2
α has at most one proper side. As a

result, the extremal value for L in each Hn
α is achieved by the region with at most one proper

side and hence the extremal value for Hα = ∪n∈NHn
α is achieved by a region with at most one

proper side.

Finally, it is clear that the range of kα(z)/z is symmetric about the real axis. It can be
shown for fixed r, 0 < r < 1, that Re{kα(reiθ)/reiθ} is a monotonically decreasing function of
θ, 0 < θ < π. Hence, the minimum value of L over Hα is achieved at −kα(−r)/r, r = |z|. A
similar argument shows that the maximum occurs at kα(r)/r.

3.2. Proof of Theorem 1.2. Next we fix 0 < α ≤ 1 and employ a similar argument to show
that the maximum value of

L(f) = Re a3
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Figure 4. The cardioids resulting from a2 = 1.1 (left), 0.5 (center), and 0.25 (right).

for a function f(z) = αz + a2z
2 + a3z

3 + . . . in Hα is obtained by a function mapping onto a
domain with at most two sides. Suppose first that f ∈ Hα

n is extremal over Hα
n for some n ≥ 5

and f(D) has at least five proper sides Γj , j = 1, . . . , 5. Let γj be the preimage in ∂D of Γj ,
j = 1, . . . , 5.

If we apply the variation of Lemma 2.2 to each Γj with control εj = ελj , then we produce a
hyperbolically convex function defined by

fε(z) = f(z) + εzf ′(z)
5∑

j=1

λj

2π

∫
γj

1 + ξz

1− ξz
dΨ + o(ε).

Expanding 1+ξz
1−ξz as a series, we see

fε(z) = f(z) + εzf ′(z)
5∑

j=1

λj

2π

∫
γj

(1 + 2ξz + 2ξ2z2 + 2ξ3z2 + . . . ) dΨ + o(ε).

Now since zf ′(z) = αz + 2a2z
2 + 3a3z

3 + . . . , we have

fε(z) =f(z) + ε
5∑

j=1

λj

2π

∫
γj

(αz + 2(a2 + αξ)z2 + (3a3 + 4a2ξ + 2αξ2)z3 + . . . ) dΨ + o(ε).

Finally, gathering the powers of z, we arrive at

fε(z) = α

(
1 + ε

5∑
j=1

λj

2π

∫
γj

dΨ
)

z +
(

a2 + ε

5∑
j=1

λj

2π

∫
γj

2(a2 + αξ) dΨ
)

z2(10)

+

a3 + ε
5∑

j=1

λj

2π

∫
γj

(3a3 + 4a2ξ + 2αξ2) dΨ

 z3 + · · ·+ o(ε).

Consequently,

(11)
∂

∂ε
Re L(fε)

∣∣∣∣
ε=0

= Re
5∑

j=1

λj

2π

∫
γj

(3a3 + 4a2ξ + 2αξ2) dΨ

and

(12)
∂∆mr(fε, f)

∂ε

∣∣∣∣∣
ε=0

=
5∑

j=1

αλj

2π

∫
γj

dΨ.

Now notice that the kernel Q(ξ) = 3a3 + 4a2ξ + 2αξ2 of the integral in (11) maps the unit
circle ∂D onto a cardioid. See Figure 4. The shape of the cardioid depends on a2 and α, but a
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Figure 5. If the extremal function has four sides, then each curve Q(γj) must
cross the vertical line l given by x = x0 = Re Q(ξj), j = 1, . . . , 4.

simple argument shows that no vertical line intersects the cardioid more than four times. Thus
if we apply the Mean Value Theorem to each of the integrals

∫
γj

(3a3 + 4a2ξ + 2αξ2) dΨ, we
have

Re
λj

2π

∫
γj

(3a3 + 4a2ξ + 2αξ2) dΨ = Re
λjQ(ξj)

2π

∫
γj

dΨ

for some ξj ∈ γj , j = 1, . . . , 5.

Suppose the values of Re Q(ξj) are not the same for all j, say Re Q(ξ1) < Re Q(ξ2). Then just
as in the proof of Theorem 1.1, we can push Γ1 in and Γ2 out, preserving the mapping radius
to produce a new map fε ∈ Hα

n with

∂

∂ε
L(fε)

∣∣∣∣
ε=0

> 0.

Consequently, since f is extremal, then Re Q(ξ1) = · · · = Re Q(ξ5). But that means the vertical
line l determined by x = x0 = Re Q(ξ1) = · · · = Re Q(ξ5) intersects the cardioid Q(∂D) in five
distinct points. This contradiction implies f can have at most four sides.

Now notice that if f is an extremal function with exactly four sides, then as above, Re Q(ξj) =
x0 for each j = 1, . . . , 4, as otherwise we could vary two sides and increase the value of L(f).
Geometrically, this means that each curve Q(γj) must cross the vertical line l. See Figure 5.

As a result, one endpoint of each curve Q(γj) must lie to the left of l, and we can use the
variation described in Lemma 2.3 to add a new side Γε at the end of one of the current sides.
If Γε is sufficiently short and γε = f−1(Γε), then Q(γε) will lie completely to the left of l. Thus
there exists ξε so that

Re
∫

γε

Q(ξ) dΨ = Re Q(ξε)
∫

γε

dΨ
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Figure 6. For a function with two sides, all four endpoints of Q(γj) may lie
on the same side of the line l determined by x = x0 = Re Q(γ1) = Re Q(γ2).

and
Re Q(ξε) < x0.

Then arguing as above, we produce a new function fε ∈ H5
α with five sides and L(fε) > L(f).

But the extremal function in H5
α has at most four sides. This contradiction means the extremal

function in Hn
α , n ≥ 3 can have at most three sides.

However, notice that if the extremal function has three sides, then we must still have one
endpoint of Q(γj) on the left of the line l for some j = 1, 2, 3. Thus the argument above can
be repeated to show that f can have at most two sides.

On the other hand, if f has two sides, it is certainly possible for all four endpoints of Q(γj),
j = 1, 2 to lie to the right of l, precluding the reduction to only one side. See Figure 6. This
is entirely to be expected, of course, as Ma and Minda have shown the extremal domain for
α = 1/2 has more than one side [7].

Since the extremal function in Hn
α for each n ≥ 2 has at most two sides and ∪nHn

α is dense in
Hα, the maximum value of L(f) is obtained by function mapping onto a domain with at most
two proper sides.

3.3. Proof of Theorem 1.3. In Theorem 1.3 we consider the same functional as in Theorem
1.2, but we maximize not only over all f ∈ Hα, but also over all α. The arguments used in the
proof above still apply, only we no longer need to ensure

∂∆mr(fε, f)
∂ε

∣∣∣∣∣
ε=0

=
5∑

j=1

λjα

2π

∫
γj

dΨ = 0

when we perform a variation. In any case, we see there is an extremal function mapping onto
a region with at most two sides.
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