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Abstract. Polynomials to be used in interpolation of digital signals are called interpolating polynomials.
They may require medification to assure convergence of their reciprocals on the unit circle.
This paper concerns discrete time windowing, which consists of scaled truncation of a series such as
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Abstract. Polynomials to be used in interpolation of digital signals are called interpolating polynomials,
They may require modification to assure convergence of their reciprocals on the unit circle.
This paper concerns discrete time windowing, which consists of scaled truncation of a series such as

A ud .omn . A sinx
Pu(z)=1+ Z (z™+2z7") sinc —, stncx = ——
N X
pr=1
where N> 1, to obtain an expression of the form
A L-1 o
Pr(2) =221+ ¥ (z7+27")e,,sine=r |
m=1

We delete the asterisk to write Py, ; wheneach ¢, =1.

The zeros of Py ; are shown to have unit modulus for L < ¥. Examples are given to show that little can
be said of the zeros of Py, for L>N. Conditions are found to define real sequences of the form,
{¢n:15m<oo}, so that P¥, has no zero of unit modulus. Several standard discrete time windows are
shown to define real sequences which are special cases of the conditions developed.

Introduction. Polynomials to be used in interpolation of digital signals are called
interpolating polynomials. These polynomials may require modification to assure con-
vergence of their reciprocals on the unit circle. Such modification is a principal concern
of this paper.

A real function, g, defined for all values of the real independent variable time, ¢, is
called a signal. A digital signal, v, is a real sequence, {¥,n: — 00 <m< o0}, consisting of
equally spaced values or samples, y,,=g(mA¢), from the signal, g, with a time incre-
ment or sample interval, Az. Thus, the independent variable for digital signals such as y
is sample time, mAt, or simply sample number, m.

The signal, g, is studied in terms of its classical Fourier transform, G, as a function
of real frequency, w. The digital analog of the Fourier transform consists of the study
of a sequence such as y in terms of its Z-transform, which is defined to be the power
series, I, having v, as the coefficient of z™. Frequency’s digital analog comes from
evaluation of Z-transforms such as I on the unit circle with the negative of the 8 in
z=e' referred to as frequency. If the coefficients in T’ are used without any actual
evaluation of I'(z) or g is used without computation of G, such use is said to be in the
time domain. But if T'(z) is used with evaluation for some z of unit modulus or G is
used, such use is said to be in the frequency domain. :

Signals are based on even functions in a number of applications and in this paper.
This restricts digital signals to self-inversive cases meaning that T(z)=T(z"Y) for z+#0.
Equivalently, y is a symmetric sequence meaning that vy, = Y_, for all m.

A second signal, f, with Fourier transform, F, poses as a filter of the signal, g, if
the convolution integral, g*f, of g and f is considered. Of course, the Fourier
transform of g = f is the product of the Fourier transforms, G of g and Fof f. The
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discrete analogy consists of the product of Z-transforms, I" and @, where the latter
refers to the power series with the sample, @, = f(mA¢), taken from the filter, f, as the
coefficient of z™.

Reduction of certain frequencies is a fundamental aim in application of a filter, f,
to a function, g. This can involve definition of f by the requirement that F(w) be a
constant, ¢, for |w|<w, but zero otherwise. If so, ¢ can be chosen so that

(1.1) F(t)=sincw,t,
where

A
(1.2) sincx = smx

These equations illustrate definition of a real signal from specification of its Fourier
transform. Similarly, digital signals are often defined by specification of Z-transforms,

The Fourier transform, F, of the f in (1.1) is referred to as a frequency window
since it has compact support in frequency. Application of such a window to a signal, g,
is known as frequency windowing. This paper concerns discrete time windowing. This
consists of scaled truncation of an infinite sequence such as y to obtain a finite
sequence of the form {c,y,,: — L <m <L} wherein the finite sequence, {¢,,: —L<m<
L}, is referred to as a time window,

Suppose a given digital signal, {b,: — oo <k < oc}, is such that b, is understood to
correspond to the time, kNA¢, with the sample interval, NAz, where N is a natural
number such that N>1. If this digital signal is to be compared with digital signals
based on the smaller sample interval, Az, the given digital signal must be interpolated
to the smaller sample interval, Az. For example, insertion of N1 zeros between every
b, and b, ., followed by multiplication of the Z-transform of the result by the
interpolating series,

A [+ 2]
{1.3a) P,(z)=1+ Y (z”’+z'”’)sinc%7£,

m=1

leads to

(1.3b) ADE Y 4 _( Y bsz)P ().

n=—o0 f== — 00

Since the coefficient of z*¥, a,y, in A4 comes from products of b, and sinc(mm/N)
such that kN =jNxm, it follows that m=0 (mod N), sinc(mw/N ) { for nonzero m,
and a,,=>5,. Thus, 41isan mterpoianon of the'given B.

A major purpose of this paper is to study possible alternatives to the 1nterp01auon
used in (1.3a) in terms of truncation of the interpolating series in (1.3b). We consider
the interpolating polynomial,

L1

(1.4) Py (z )—zL Hi+ ) (z’”+z m) sch

me=1

where N> 1.

Note that Py, is a polynomial of degree 2L — 2 except that it has degree 2L—3
and Py ,;(0)=0 when L=1 (modN). In any case, its real coefficients imply conjugates
of nonzero roots to be roots, and symmetry of coefficients implies reciprocals of
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nonzerc roots 1o be roots. Since the conjugate and the reciprocal of a root of unit
modulus are equal, and the conjugate of a real root is the root itself, nonzero roots can
occur in pairs. In other cases, a nonzero root, its conjugate, and their reciprocals are all
different and plot as the vertices of a trapezoid in the complex plane.

We show that the zeros of Py ; are all of unit modulus for L. < N. Since

(1-5) PN,N+1(Z)=PN,N,(Z)=

Py v4+1 has a zero at the origin in addition to the zeros of unit modulus of Py . We
use examptes to show that little can be said of the zeros of Py ; for L>(N+1).

Conditions are then developed to define real sequences of the form, {¢,:1=m<
oo}, so that the polynomial,

A L-1
(1.6) P (z)=z""Y1+ © (zm+z—"=)cmsinc1”ﬁ"-’~ :

m=1

has no zero of unit modulus. A number of standard discrete time windows are shown to
define real sequences which are special cases of the conditions developed.

2. Zeros of Py, for L<N. Our study of Py ,, for LN, is based on the
properties of Hy , as defined by

(2.1) Hy (8) = (2a/N) Py (2) /257"
LeEvmMa 2.1. -

(22) Hy, ,(8)= f:_:;N sin[(S?nIJ(t—/;))t/Z]

i

dr.

Proof. Use the identity,

a N ) imw/N__ ,—imn/N
(2.3) / TN gimt gy = gimd €€
8—m/N m
=£eim925in(mw/N) =gm'£eimﬁsincm’
N ma/N N N

to eliminate the sinc in (1.4). Then, substitute (1.4) in (2.1) and compute

L1
HN,L(B)=f8+W/N(1+ > (efmf+e—fmf))d¢

—a/N m=1

PR, 1—gitL=1) i1 Y
=f "/ (1+e”—'——e—'_—+e“”————,—— dt
0-—m/N 1-—e" 1~e"t

P f:‘ LDy _ (1 _ o it{L-1)
f*””we(l S ol Ul ))dt
8—m/N 1-e'

G+a/N er’z_ iiL_1+e—fl(L—1)
" (1+ £ dt

d—m/N 1—e¥

9 /Nl GL-D1/2 e HZL~1)1/2
f ' dr,
[

—n/N eir/?._e—u/z

which implies (2.2). 0O
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LEMMA 2.2. Suppose 0<0—n/N<8+x7/N<2x. Then,

dHy (8)  sin[(2L-1)1/2] "
@4 dg sin(#/2) 8—n/N
is zero if and only if
(2.5a) sin(L8) sin[(L~1}m/N]=sin(Lx/N) sin[( L~1)8].

Proof . Differentiate (2.2) to verify (2.4). Then, set the derivative in (2.4) to zero
and ciear fractions to obtain

(2.5b) 0=sin[(2L—1)(8+=/N)/2] sin[(§ —7/N)/2]
=sin[(2L—1)(8—=7/N) /2] sin[(8+7/N) /2]
=sin(L8) sin[(L~1)7/N]
—sin(Lax/N)sin[(L—1)8],
involving a trigonometric identity which can most easily be verified by writing the sines
in (2.5b) in terms of complex exponentials and combining terms on both sides to

compare exponents. This completes the proof. |
LEMMA 2.3

(2.6)  Hy  (8)=—(2/L) sin( Lr/N)cos(L8§)

42 frr/N sin( L8 )cos( Ls }sin @ — cos( L8 )sin{ Ls )sms
coss ~cosf

2fw/NCOS(Ls)COS (L- 2}?1 f;zz(gLB)COS[(L 1)3‘]

Proof. Use the variable of integration, s =7~ #, to write (2.2) in the form,

(2.7 HN.L(3)=j::“;;N sin(Lt)cos(t/sfrz(—t/c;)s(l,t)sin(t/2) i

2fw/N sin[ L(8+s)] cos[(;fj+s)/2]
—a/N sin[(8+5) /2]

—cos[L(8+5)] ds

wherein the latter integrand can be written in the form,

/N

(2.8) f_:/ cos[ L{8+s5)] ds % [L(0+s)_] .

= L-Y{(sin[ L(8+7/N)| —sin[ L(8-n/N)]}

=(2/L) sin( L7 /N )cos( L#).
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Change the integration interval from (—n/N,7/N) to (0,7/N) to write (2.7) in the
form

(2.9) H, ,(8)+(2/L) sin(Lw/N)cos(L8)
fw/NSln[L(9+S)]COS[(0+“S)/2] N sin| L(8—s)}cos[(8—s)/2]
0 sin[(8+5),/2] , sin[(8—s)/2]
=/ cos[(8+5)/2]  cos{(6—s)/2] ) .
”,l(; (81n[(9+s)/2 * sin[(8—35) /2] )sm(L()) cos(Ls)
cos[(B+5)/2] cos[(8—5)/2] .
+( sin](0+5) /2] ~sin[(8—5)/2] ) cos(L8) sin( Ls)ds
fw/Nsm(Lﬁ)cos(Ls)smﬂ cos(LB)sm(Ls)smsds
0 sinf(8+5)/2]sin[(6—5) /2] ’
which implies the first equality in (2.6). Observe that

ds

/N cos{ Ls Jeos( L8 )[coss ~cos8 ]
cos s cosf

sin( La/N)cos(L8)=L f

»

shows that Hy, ;(#) s given by an integral in which the numerator of the integrand has
the form, )

— cos( Ls Jcos{ L8)[coss — cos 8] +sin{ L8 )cos( Ls )sin§ — cos( L8 )sin( Ls )sins
= cos{ Ls)[cos{ L8 )cos# + sin{ L8 )sin8] — cos( L8 )[cos( Ls Jcoss + sin( Ls Jsins],
 which implies the remaining equality in (2.6). O |

THEOREM 2.1. The zeros of Py ; have unit modulus for L N.
Proof. Set L to N in (2.5) to observe that

dHy n(8)
df

Although #=kn /L is not a zero of the derivative of Hy ;, we use it to write the first
equality in (2.6) in the form,

(2.10) =0 iff sin(N)=0 iff §=kn/N.

(2.11) Hy ,(kn/L)={(-1)"(2/L) sin(L7/N)

/N sin{ Ls)sins
2= "
(1) f coss —cos{ ke /L)
Since the above integrand is positive on (0,7/N) if L <Nk, the integral in (2.11) is
posmve Thus, Hy ;(kw/L) has (L—1) changes of sign as & counts from 1 to L,

Py ;(2) has (L—1) zeros in the upper half of the unit circle, (L —1) conjugate zeros in
the lower half of the unit circle, and the proof is complete. 0

3. Zeros of P, for L>N. Several examples are given 1o show that Theorem 2.1
cannot be extended to cover L> N, The most trivial example,

(3.1) | PN,N+1=ZPN,Ns

has a zero at the origin in addition to the zeros of unit modulus of Py .
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We discuss Py ;, for > N+1, in terms of Hy ;, given in (2.1), and F), ;, defined
by

(32) Fyn(x) = Hyn(0)

Observe that each zero of Fy ; in the interval, (=1 1) implies two zeros of Hy ,,
which implies two zeros of unit modulus of Py ;.

The example,
| mr
(3.3a) H, (8)=7+4 ) -—sin——cosmé
; o 2
4
=7+ 4cosl9—§cos?al9
1
=q+ Scosﬂ—wégcosW,
defines
16 .
(3.3b) F (x)=a+ Bx —=x7, x=cos#t,
which has three real roots, two in (—1,0) and one in (1, e0), since it is positive at
x=—1, x=0, and x=1, but it is negative for x= — % and for large positive x. Its two

roots in { — 1, 0) force four roots of unit modulus on the polynomial,
3
(3.3¢) Pal2)= z emsing 3T

=L(—2+622+3w23+6z4—226).
3o

Since P, 4(0)<0 and P,,(1)>0, the two remaining roots consist of one root in (0,1)
and its reciprocal in (1, ).
The second example,

5
(3.4a) Hy(@)=m+4) —Lsmmcosmﬁ
/ a1 M 2
4. 4

=w+4cos€—§cos39+§c0550

mw+4(3cos0-%cos38+15—600s59)
defines
(3.4b) 26(x)wn'~4-4(?uc—};—x +156 5), x=cosf,

which has three real roots in (—1,0) and two complex roots, since it has the same sign
as x as |x|—oc, a positive maximum at —v3 /2, a negative minimum at —1/2, a
positive maximum at 12, and a positive minimum at v3 /2. The three roots of F,gin
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(—1,0) force six r00ts of unit modulus on the polynomial,

2 (m=5)w
{3.4¢c) Pyelz)= Y zsine-———
- m=0

2
157

(1B where B(2)= () 00

(3 - 522+1Sz“+l§ilz5 +15z8~5z8+ 3210)

with
(3.5a) 0(z)=32%—-52"+15z.
Since
6 12 _
(3.50) do_15(:+1) g 4B 1G22V

2 z*+1 dz 8z+1) ]
it follows that xB(x)>0 for nonzero real x,
inf{| B(x)}:x real} =|B(-1)|=26,
sup{1 +2B(x)/(157): x <0} =1-52/(157) <0,

and P, has no real roots. Thus, its remaining four roots must form the vertices of a
trapezoid in the complex plane.

4. Zevos of P ;. We seek real sequences of the form, {cn 1 <m< o}, such that
polynomials defined by (1.6) have no roots in {z: jz{=1}. The search will be based on
using the same real sequences in defining the polynomials,

A L-1
(4.1) Ovr(z) =142 1 cmz"‘sincﬂNqT—,
m=1

which will then be such that

(4.2) Re{QN,L(eja)]cos(L—1)0£RC[P§!L(816)].

DeriNiTioN 4.1. R denotes the class of functions which are analytic and of
positive real part on {z:|z|<1}. ‘
First, take L to be infinite in (4.1), set ¢,, =1 for all m, and denote the result by

(4.3) w(t) 2142 i ngincﬂNf,
m=1 :

which will be shown below to lie in R. A classical result will then be used to develop
conditions on {¢,:1=m<oo} to imply Qy . ER. Another classical result will then be
used to show that the same conditions imply that P ;. as given in (1.6), has no zeros of
unit modulus. Alternative criteria for determining whether a given {¢,: 1<m< oo} has
the desired properties will then be shown.

LemMa 4.1. The function, w, maps {£:81<1} onto the vertical strip bounded by

{w:Rew=(}}U{w:Rew=N}. Thus, wER.
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Proof. Compute

N & ¢™
= il s imw/N __ ,—imu/N
(4.4a) w({) 1+iw mgl - (e e )
o0 i, imw/ N 0 m,—ima/N
=1+£ E f ¢ _ Qm%__
I o m oy m
N i/ N ~im/N
21-!—;(—111(1"%{&' )+1n(1-¢e ))
— —im/ N
=1+~:j—v—ln1 e

Since w is analytic for [{|<1 and w(0)=1, it suffices to consider w({) for jz|=1.
Compute

' N l_ei@—irf/N
239 e P
(4.4b) Rew(e )-~1+Re(m1n1_escp+m/w)

N ei((b—w/N)/Z(e*i(dJ"-w/N)/Z_ei(lbww/N)/Z)
=14+—Imin— - -
ar : el(‘b+w/N)/2(e—:{¢+vr/N)/2W ea(®+'rr/N)/‘2)

1 Y o e sinl(@=7/8) /2]
_1+WIm1n(e /Nsin[(®+w/N)/2])

T
—_]_V—+W)_ N, ®&(n/N, 2a—a/N),
"0, ®&(w/N, 2a-u/N)’

LemMa 4.2, Let L be an integer exceeding unity. Let r; denote the unique positive
reot of

(4.5) 2rt+r—1=0.
Then, O<ry<landry<rp.,. Also, r,;>1~(2/L)nL, andr,—>1as L— oo. Adopt the
definitions,

] L-1
(4.6) () = Y al” and 5,({) 2 Y oaln
n=0 : n=0

If fER, then Re[s,({)]>0 on {{:[|<r.). Moreover, the example using ay=1 and
a,=2 for n>0 shows that r, cannot be increased in the conclusion.

Proof [2, p. 523]. | )

LEMMA 4.3. Let L>1, r&(0,r,) with r, defined by (4.5), and f as denoted in {4.6).
IfFfER, then

(4.7) | Re( Z_: amr’"z'")>0 on {z:{z]=1}.

m=0

Proof. Set {=rz in partial sums of f as denoted in (4.6), and note that |z|<1 if
and only if |{|<r<r,. Then, Lemma 4.1 implies (4.7). (]




742 ROGER W, BARNARD, WAYNE T. FORD AND HSING Y. WANG

LemMMA 4.4. Let {b,:0£n< w)€l, such that by#0, and let f be denoted as in
(4.6). Then,

(4.8) ' Re 1 Y b,a,|z0
by n=0
for all f€ R if and only if '
(4.9) Re(-l— Yy bnz");l on {z:|z}=1}.
by 1= 2

Proof. [2, PP- 517-518].
LEMMA 4.5. Lemma 4.4 remains valid with (4.8) replaced by

oo
(4.10) Re(gl— Y bnanz")_z_() for |zi<1.
0 p=0
Proof. Clearly, validity of (4.10) for all f€R implies validity of (4.8) for all feR.
It remains to show that Lemma 4.4 implies validity of (4.10) for all f€ R. Fix { with
0<|¢]<1 and let fe R. Then,

A = anﬁ’" .
(4.11) g(z)= ¥ (—_)Z
n=0 lfl
satisfies g; € R. Thus, (4.8) can be written in the form,
(4.12) Re(-;— v lif»if—);o for {11,
¥=7

wherein setting {{|=1 merely reduces (4.12) to (4.8). Let z= ¢/ to write (4.12) in the
form,

=8
(4.13) RG(I;— Y b,,a,,z“)gﬂ for |z|=1.
0 n=0
Since f€ R implies Re(a,)2 0, (4.10) applies for z=0, which combines with (4.13) to
imply (4.10). O
TaEoREM 4.1. Suppose {b,:0sn<02, bo=1} is a real sequence satisfying (4.9).
Let :

(4.14) ¢ =r"b,, where O<r<r,

with r, being the positive root of (4.5). Then, P defined by (1.6). has no zeros in

{z:}zj=1}. _
Proof. Lemma 4.1 shows wE R. Apply Lemma 4.5 to w to show that fER, where

(4.15) ) 21+2 f‘, bmg'"smc%’i.
. m=1

Apply Lemma 4.3 to show that

A L-1
{(4.16) Quo(z)=1+2 Y bmr"'z’"siﬂc-n%!,;i

m=1
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has positive real part on {z:|zj< 1}. Since (4.14) shows (4.16) to be the same as (4.1),
(4.2) implies the desired result. g
Classical tests to determine whether a given finite sequence, {c,:0<m<L}, can
be used to define a window implying the results in Theorem 4.1 are given below.
THEOREM 4.2. A sequence, {b,:0<m<L, by= 1}, initiates some infinite sequence,
{0, 0xm< o0, by=1}, such that

(4.17) Re(1+ s_j:lbmz’")>% for Jz|<1
if and only if
1 b by o b,
b, b, by,
(4.18) s o
B, B, 1 b
Bk Ek--i El

for 0 <k <L [6]. Moreover, (4.17) is equivalent to the existence of a probability measure,
¥, on [0,27] such that '
= 1 in imp
(4.19) bm_ZW[O e d¥(0), O<m<so.
Proof . [5] for (4.18) and [7] for (4.19). 0
THEOREM 4.3. If the real sequence, {bu:0=m<L, by=1}, is such that (4.18) is
satisfied for O<k <L, let

(4.20) cm=bm(1—§9&)

L

define the coefficients in (1.6). Then P ;. has no zero of unit modulus.
Proof. The inequality above (4.6) shows that (4.20) defines ¢, satisfying the
hypotheses of Theorem 4.1. O

5. Windows. The generalized Hamming window [4] is a standard parameterized
time window which defines real sequences satisfying the conditions in Theorem 4.2.
This window is defined by :

b,=a+(1—a) cos?{qin;

=d+(1-a) cos?

(5.1a) K—1 1
for K=2J+1 and —J=-“~*"2—§m§m~§—=.f,
or
' 1
] b,=a+(1—a) cosgm=a+(1w—a) c:osw(zm-k1 )
for K=2J and —J=—§§m§§—lma’—1,
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wherein « ordinarily lies in [3,1). The generalized Hamming window is known as the
Hamming window if a= 0.54 and as the Hanning window if « is one-half.

The even case, with K =12J, is discarded here for lack of symmetry. Then, the
generalized Hamming window becomes

(5.2) e
=a+{1—a) cos%rrﬁ for -J<mglJ.
THEOREM 5.1. Use b, given by (5.2) with J=N-1>0and 0<a<l Then, {b,,:0
<m<N~-1, by=1} initiates the infinite sequence, (b, :0gm<co, b,=1), satisfying

(:1.17) if b,, is defined by (5.2) for all m.
Proof. Compute

x g 1-a 1 1
(5.3) Eobmz =153 ( + VWN).

-2z 1—-ze™V  1-2ze

Since (1—2z)~* maps the unit disc onto {w:Re(w)>1 /2}, and the bracket in (5.3)is a
sum of compositions of (1 — z)~! and rotations of the unit disc,

©  \ a l-a_l
(5.4) Re(mez )>5+ =73 lz|<1. o

m=10
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