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In this paper, we study weighted inverse Holder inequalities obtained by replac-
ing Lebesgue measure ¢ first by % dt and then by e~ dr. The first case generalizes
an old result of Frank and Pick and, later, Bellman. The second provides a new
inverse Holder inequality for Laplace transforms.  © 1990 Academic Press, Tnc.

1. INTRODUCTION AND MAmN RESULTS

Many authors have studied inverse Holder inequalities for concave
functions of a single variable. One of the earliest results is due to Frank
and Pick [107], who proved that

r () (1) dz% (f: W2(1) dt)m (jol (1) dz)m (1.1)

o]

for all functions u(t), v(¢) that are nonnegative and concave on the interval
[0, 1]. Bellman [27, via a general minimization procedure, established the
same result and, in collaboration with H. F. Weinberger, obtained the
inverse Holder inequality '

1 ' 1 ifp 1 1/q
j u(z)u(z)dzchq([ #?(£) dz) U v(t)‘fdt) , (1.2)
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valid for the same class of functions, with

Coy=L(p+ 1) (g+ 1),  1<pg<ow lp+ljg=1

For additional historical remarks and an clegant generalization of (1.2} to
finite products u,u,---u, of concave functions, we refer the reader to
Borell [5]. For other related results see [1, 4, 6, 7, 8, 11, 14].

In this paper we consider generalizations of (1.1) and (1.2} in which
Lebesgue measure df is replaced by w(t)dt. The choice w(r)= *1in (1.1)
leads to our first resuit.

THEOREM 1. If u and v are nonnegative and concave functions on the
interval [0, 17 and o> —1, then

jﬂl w(0) o(t) 1 dt = /2:;“;12)([: W2(1) t“dr)mu(: 22(1) % dr)m. (1.3)

Equality occurs for the choices u(t)=1, v(t)=1-1, 0<t<1. Moreover, if
p=l

i . 1 1 , . lp
J, w0 dr;(oﬁ+l)(a+2)B(p+1,a+1)m’(Jo Wi dt) (14

equality occurrving for the choice u{t)=1-1,0<r<1.
Here B denotes the beta function

1 |
B(p.q)=| ¢ (=1~ di.

o

In case a =10, (1.4) reduces to Favard’s inequality 19,51,

1 (1 +p)l/p 1 .
jo (1) dt;—mf_(L u(f) dr).

The weight w(f)=e™* {0<x<oco), with integration over 0<?< o,
yields an inverse Holder inequality for Laplace transforms.

THEOREM 2. If u, v are. nonnegative and concave on [0, ), 1<p, g
< oo, and 1/p+ Vg=1, then, for 0 <<x < ca,

o oo i o0 g
L} u(z)u(z}e“dgcpq(jo u”(r)e“‘dt) (j v‘?{t)e"x’dt) . (L5)
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where
Cpq=Min(F(p+I}_”", Iig+1)~9), (1.6)

Eguality holds for u(ty=1 and v(t)=1 or vice versa.

In (1.6), I denotes the gamma function I'(x)= {5 e '+~ " dt.
Both results follow a procedure suggested by Bellman in [2]. The idea
is to represent « and v as integral transforms of the type

jb K(x, 1) f(2) dt,

for some appropriately chosen symmetric kernel, and vitimately reduce the
proofl to a problem of determining the minimum value of the ratios of
iterated kernels. Thesc investigations are carried out in Sections 3 and 4.

2. REPRESENTRATIONS OF CONCAVE FUNCTIONS

The proof of Theorem 1 relies on Green’s function

x(1—1), O<x<r<l

H1 — x), 0grsExgl (2.1)

K(x, r)={

for the operator L(u)=1u", with the boundary conditions u(0)=u{1)=0.
This is a symmetric kernel and as f and g range over the nonnegative
functions in L'[0, 1], the functions

w(t) =J01 K, x) flx)dx,  o(t)= j: K1, g) glx) dx (22)

constitute a dense subset of the nonnegative concave functions on [0, 1];
hence it suffices to find

1
Minf u(t) vl(2) = dt, (23)
0
where « and v, given by (2.2), satisfy the normalization conditions
1 1
j W) e de=1, f v (1) £ di = 1. (2.4)
¢ 1]

Next we substitute # and v from (2.2) into (2.3). Using the notation

KP(x, y)= Jl Kix, 1) K(t, x) * dt (25)
R} .
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and
KP(x, p)
JE®(x, ) VK, y)

this substitution leads to the inequality

(2.6)

Golx, y)=

Jl u() v(r) & dt

> Min [G.(x y)]

Ogx, y=x1

x L,I J: JEOE x) KD, p) fx) gy dedy. (27)

Now it follows from (2.2), (2.4), and Schwarz’s inequality that

1= J‘: uz(t) o dt = Ll ult) [jol K(t, x) f(x) dx] £ dt

xj f(x) Uol K(t, x) ult) drjl dx

1
Y0
1 . 1 1/2 i 1/2
gj f(x)U Ki(f,x)rddz] U uz(t)r“dtj| dx
Q 4] 0
1
= [ f1x) ED(x, x) dx.
Q
Similarly,
1
1< o) VEEG, 2
Hence (2.7) becomes
i
ju{r)u(z)r*drz Min  G,(x ).
0

Ogx vl

This is the function we wish to minimize, We will show that

- a+1
Mi - _ : .
osx,glg Glx, 3) 2(e+2) (28)

The proof of (1.4) follows similar lines. Our proof of Theorem 2 begins
with the observation that the integrals in (1.5) exist for ali positive x; hence
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it suffices to establish the inequality at x=1 and make a simple change of
variable. Accordingly we can establish the required inequality by finding
the infimum of

{7 utr) o(e) e~ d (2.9)

0

over all nonnegative concave functions » and v that satisfy
[Twwera=1, [ vnera=1. (2.10)
a 0

The infimum in (2.9} is unchanged over the smaller class of nonnegative
concave functions that vanish at the origin, are polygonal, and eventually
constant. All members of the latter class are found among the uniform
Iimits of nonnegative concave functions of the form

w=[" ke, o= ke ewd @)

where f and g are nonnegative functions in L'{0, co) with compact support
and % is the symmetric kernel

X, D<x<st<w

212
1, C<r<x <o, ( )

K, x)={

Substitutions of (2.11) into (2.9), followed by an application of Fubini’s
theorem, leads to

[uoea={" |7k » 0 g ey, @213)

0
where

K2(x, ) =[°° ke(x, 1) k(t, p) e " dt (2.14)
0

for 0<x, y< co. Using the same procedure as before, except that now
Holder’s inequality is required, we arrive at

Ju(r)v(t)e”dt; inf  H(x, y), (2.15)
0 0gx, y<oo

where

k2(x, y)
(J& k(x, )" e dn)? (& k(y, 1) e~ dr)*

Hix, y)= (2.16)
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The remainder of the proof consists of showing that

inf  H(x, y)=Min{l(p+1)"", Ng+1)""}. (2.17)

O x, y<w

Theianalysis is given in Section 4.

3. ProoF oF THEOREM 1
FOosx<y<l and o> —1, we find from (2.1} and (2.5) that
: i
KD(x, y):j K(x, 1) K(t, x) t* dt
Q
1 ¥
=x(1—y)j z“”dr+x(1—y)[ (1—0) " de
0 x
1
+xyj (1—1y rat.
¥

The change of variable 1= (7~ y)/(l — y) in the last integral leads to

[ =02 d=(1-y7 gy)

where
! 2
dur)=] 1=tV [+ -yl de (3.1)
Hence
a2+ 3
K@ =1 — —_
B, y) = (L=x)(1 = ») T
ya+2_xm+2 y:x+37xot+3
~x( y)|: o2 o+ 3 }

+xp(1=p) du(3)
and the quotient -

6. y) = K5 Y)
A O K0 )
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becomes
G.(x, y)
((1wx)(iwy)X““/(OC+3)+X(1~*y) )
[ 2= x" o+ 2) = (3P = x* ) e+ 3) ]+ (1 = »)’ guly)

(\/(1—x)zx“+3/(a+3)+x2(l—x)3¢5m(x)- )
U=y a3+ M-y ey (32)

for 0= x < y< 1. Where necessary G,(x, y) is defined by continuity. Since
G, is a symmetric function it is necessary only to find the minimum over
0< x< y<1. As Bellman observed, the minimum of

—x'—y +2y

Go(x, y): 2(1“)6')}?

(O<xgsy<g1)

is } at the point x=0, y=1 and at the symmetric point x=1, y=0. It
turns out that & (x, y) also has its minimum at these two peints. Tt is
convenient to write

— (= (e 3)+ (1= ¥ da(y)
G (x, y)= . {33
) (,v(l Ny P T T qsa(x)) ()

VY e 3)+ (L= y) ()

((1 = x) x* o+ 3y + (= X"+ 2) )

Clearly,

e+ 20 e+3)

/40 1w+ 3)

and, from (3.1}, ¢.(0)=2/(a + 1 (e + 2} + 3). Therefore

a+1
G0, 1} = /2(05—6—2)' (3.4)

We approach the problem of showing that (3.4} is the minimum of G,
on 0<x< y<1 by analyzing 8G (x, y)/dy for 0<x<1, x<y<1 and
0G,(x, 1)/éx for b= x < L.

G.(0,1)

Lemma 31 (080G, /0y)x, »)<0for O0sx<land x<y< 1.
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Proof. First, fix x, 0 x < 1; then define functions P and ¢ by

—K;Z](x’ y)m(l'""X)xcH—Z yd+2~*xg+2

P(y)= x(1—y) a+3 o+2
yoc+3___ x+ 3 3 )
T 4‘-}/(1 ) ¢r) (3.5}

and

CKP(yy) it

0= = D ) (36)

for x< y< 1. From (2.6},

X Piy)
Golx, y)= .
5 7) VEP(x, x) /O

Note that the first factor is 1/./¢,(0) at x=0. Since the denominator is
positive if 0<x<l and x<y<1, we can determine the sign of
8G (x, y)/0y from its numerator which, except for positive factors that
depend only on x, is

N(y)=2Q(y) P'(y)— P(y) Q'(»). (3.7)

At first glance this expression appears quite intractible. Nonetheless, it can
be factored usefully. We start with

Pl(p)= "t = p 2 (1 =4y +337) gy} + p(1 =y ¢l ). (38)

In order to climinate ¢, we integrate by parts in (3.1) to obtain

B3 = P s 4 (39)
The result is
P(y)=(1— ) $.(2) (39
Similarly,
T Q=) - (310)

Substitution of these derivative relations into (3.7) gives

N(y)=28,(»)[(1 =y} Qy) — »P(y)]. (3.11)
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Finally, substituting from (3.5) and (3.6) for P(y) and Q(y), we artrive at

20,(p) p(x=F 32— p=t2)

Niyy= (a+ 21+ 3)

(3.12)

It follows that (6G,/dy)(x, y) <0 for 0< x <1 and x < y<1. |

LemMa 3.2, The function G.(x, 1) is strictly increasing for 0 < x < 1.
Progf. Let y=1in (3.3). After some simplification,
1 1— xrx+2

V2 +2) S w4 2) = x Y at ) (o + Do +2)

G x, 1)=

The numerator of (3G, /8x)(x, 1} simplifies to

o+ 3 a+3
o “ﬁxm+3 a+2 X+1
* ( +fx+1x a+1

and a derivative analysis shows that the values of the interior expression

decrease from 1 to 0 as x increases from 0 to 1. Hence {(0G/9x)(x, 1) >0 for
0<x<1 and the result follows. §

The proof of inequality (1.3) is now immediate. From {2.6) it is clear that
G (x,x}=1 for 0<x< 1. This is the set where G.{(x, y) takes its global
maximum value. According to Lemma 31, G,(x,y) decreases as y
increases from the diagonal, where y=1x, to the upper boundary, where
y=1. And from Lemma 3.2, the surface increases with x along the upper
boundary. Since G,(x, y)=G( ¥, x) we conclude that the minimum of
G,(x, ¥) on the rectangle 0 <x <1, 0< y=1is given by

_ o+ 1
G“(O’”:\/z(au)'

Our thanks to George Gasper for pointing out that this proof is valid for
o> —1, not just for u=0, 1, 2....

To prove inequality (1.4), we again suppose that

1
1=ty a,
G +
anduse representation (2.2} to conclude that

1 1 1/p
1<j j K, ) ¢ dt) fix)dx.
(o] 4] :
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Much as before, we find that

L fo Kix, t) ¢" dt
“dt = . : :
L ulo) o dt 03{121 (§5 Kx, )7 1% dt)*? (313)
Let 7(x) denote this ratio. A calculation based on (2.1) shows that
T()_ 1 : 1_x2+1
T Der ) [A—x8) 2 Yp+at +[L(1-n7 = di ]
(3.14)
Clearly,
1
T(0) = ! (3.15)

(a+ D{e+2)Blp+1,a+1)"7

and a derivative analysis shows that T'(x)>0 for 0<x<1. Hence
T(0) = Ming ¢ .« T(x) and (1.4) follows.

4. PROOF OF THEOREM 2

Starting with (2.12) and (2.14), a short calculation yields an explicit
representation for (2.16}):

2—(x+2)e " —xe "
(pj‘a P~ le=" dp) 1/p qj‘ i -—ldt)qu’ 0gxgy<ee
H = .
(x, ¥) 2 (yt2)e7— ye (4.1}

GTE e A ey OSySEEe

Note that H(x, y) is not symmetric unless p = g = 2. By (2.15), the theorem
will follow if we can establish that

inf  H(x, y)=Min{I(p+1)""7, g+ 1)~} {4.2)

O, y<oo
We intend to do this by showing, first that H(x, y) has no local minima in
the quadrant 0< x, y < oo. Then, by analyzing the functions H(x, o0) and
H(y, o), we will conclude 'that the infimum of H{x, y) is the minimum of

H(0, w0), H(w, ), H{wx, 0) and, finally, that the minimum of these three
values is

Min{I(p+1)~"7, I'g+1) 7"}
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In the following p and g denote conjugate indices

1< p, g<oo0, pl+gl=1.

LemMa 4.1. H(x, y) has no local minima in the regions 0< x < y < oo
and 0 < y << x < o0,

Proof. First consider the region 0<'x< y<oo. Except for a fixed
positive factor that depends on x only, the numerator N,(y) of 8H(x, y)/dy
is

hd
Ni(y)=ag?e™" J e T di— gy e T (b —ae ), 4.3
0
where

a=x and b=2—(x+2)e " (4.4)

‘Clearly N,(0)=0, and since 5> 0 if x>0 and ¢~ 1 >0, N () is eventually

negative. On the diagonal (4.3) reduces to
Nx)=gxe™™ {q J.x 17 d —2x2 1 — (x + 1) e_x]}. (4.5}
0

If g =2, the last factor is zero; otherwise a derivative analysis shows that

Nix)<0 if ¢g>2,0<x<o0,
Ni(x)=0 f ¢g=2,0<x<an, (4.6)
Ni(x}=0 if 1<g<2,0<x=<om.

Next consider the function N,(y),

Na(y) =g~ 'e’Ny(y) = ag j: el tdi— yr b —ge™).  (47)

For 0 < x < y< co this function is strictly decreasing because
2y)={g—1) y* *[ape™ "~ (b—ae™ )] <0. (4.8)

To see this, use (4.4) to conclude that

[aye > —{b—ae )], .= —-r e~ dt <0;
9 -

y=x
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then observe that
d _ _ -
—[aye ™ —(b—ae ")]= —aye™ ¥ <0.
dy

Consequently, the function N,(y)} is also strictly decreasing for 0 <x <
y < 0. So, we see from (4.6) that for g2 2, Ni(y)<0if0<x<y<om. We
can therefore conclude that dH(x, y)/dy<0if O<x<y<w and 2<¢q.

In case 1< g<?2 it follows from (4.8), (4.7), and the last inequality in
(4.6) that N,(x}> 0, that N,(y) decreases if y > x, and that N, (y) is even-
tually negative. Consequently there exists a y,, yo>x, such that ¥ i{y)=0
if x < y< ygand N (y)<0if yo< y. Therefore, if 1 <¢ <2, H(x, y) has no
local minimum in 0 < x < y << 0,

A similar but more elementary analysis shows that

l—e™?

+ -
HO =i e ay

strictly decreases from 1 to I'(g+1)7"? as y increases from 0 to co.

We have shown that H{x, y)} has no local minima in 0 < x < y <. An
identical analysis, based on JH(x, y)/0x, shows that H(x, y) has no local
minima in 0t y<x<oo. |

Lemma 4.1 also rules out the diagonal y=x as the location of a local
minimum of H. For if 2<g < o and 0 < x < y < oo, (8H/0y)x, y) <0; but
if 1 < g <2, then 2 < p< co and we examine the sector 0 < y < x < oo where
AH(x, y)/0x < 0. Therefore we conclude that the infimum of H(x, v} is to
be found among the infima of the functions

2—(x+2)e "
(x; OD) F(q+ I)lfq (p !'g fp_-1€7z dt)lfp, O0<x<w (49)
and
2— e
H{co, y) = t2)e 0<y<oo. (4.10)

Lp+ 1) (g5 et dt)?®

Lessia 420 (a) If2<p< oo, then,

inf H(x, 0)=Min{l{g+1)"", 2T (p+1)"" I'(g+1)717}.

Ogx<on
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(b) If2<g< oo, then,

inf  H(y, oo)=Min{I(p+ 1)~ 2I(p+ 1)~ I'(g + 1)~ 1,

0y

Proof. 1t suffices to establish (a). Note that

lim H{x, w)=1{g+1)7"

x~ Gt

and

lim H(x, 0)=2I(p+1)""" (g +1)~ .

The numerator of H'(x, «o) i1s the function

My(x) = pPx+ 1) e_"J: P le~ di— pxP e [2—(x+2) e ], (4.11)

If p=2 this expression is positive and H{x, o) increases for 0 < x < oc. So
suppose 2< p< oo, Starting at M, (0)=0, M,(x) is positive for small x
and, since p— 1 > 1, eventually negative as x — co. Hence H{x, oo) initially
increases and decreases ultimately to its asymptotic value. Thus (a) would
follow if we could demonstrate the existence of an x,>0 such that
M(x)>0if 0<x<x, and M (x)<0if x,<x.

To obtain more precise information consider the function

M,(x)=p'e*M (x). ‘ {(4.12)

Its derivative
Mytx)=p [ t""‘le_’dt-—(p—l)x”'zj e di
0 4]

is also positive for x near O and, since p—2>0, eventually negative as
x — o0, Further, any positive x where

Mi(x)=e7x" = (p—1)+ [p+(p—1)}{p—2)]x*
+2Up 1 p =20 x+1)=2{p—1)(p—2)e*}
vanishes must also be a solution'of

ox-1 1 x+;[1+_]
X 2p-2)7 2 (g—1{p-2)7
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At x =0, the function on the left has the value § and strictly increases with
x, whereas the linear function on the right has a value greater than i at
x =0 and strictly decreases with x. Hence this last equation has exactly one
positive solution x,; from this we infer that A3(x)>0 f0<x<x, and
M(x}<0 if x,<x<oo. This, in turn, shows that MA5(x), starting from
M4(0) =0, increases in 0 <x < x,, decreases in x; <x < 0, and eventually
becomes negative beyond some point x,. Accordingly, M(x), also starfing
from M,(0)=0, increases in 0 < x < x,, decreases In x; < x < 0, and, as
noted above, eventually becomes negative at some point x,. Since
M,(x)>01in 0<x<x, and M,(x) <0 in xo<x <o, the same statement
applies to M,{x) by (4.12). Finally, from the definition of M, (x), H(x, )
increases in 0 < x < x, and decreases in xo<x<oo. |

Linva 43. (a) IFl<p<2 infyesco Hix, o0)=1(g+1)" "
(b) If1<q<2, infoq, . Hio, p)=T(p+1}7".

Proof. Assertions (a) and (b) are identical. Working with {a) we note,
from (4.9), that lim, _, o+ H(x, ®0)=1I(q+ 1)~9, Hence it is only necessary
to show that

fx) =02~ (x-£—2)e"x)"’w—pj: 7L~ dt >0 (4.13)
for 1 < p<2 and 0< x < oo, Clearly f(0)=0. Application of the inequality
e < 1/(1+x)in

Fix)=p2—(x+2) ™™~ (x4 1) e "= px?~le
shows that
f(x)zpx? e *[(x+ 1?77 =1]20.
This establishes (4.13) and (a) follows. |
The thrust of these last two lemmas is that

inf  H(x, y)

Oy, p<on
is the minimum of the three numbers

Iip+1)~1, Mlg+1)~Ye, ip+1)"Yr Mg+ 1)"Y (4.14)

However, it can never happen that
Mp+1)=2* and g+ 1)>21

for conjugate indices. For one of the indices, say p, satisfies I < p<2 and
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in this range I'(p+ 1)< 2 and 2 < 2?. This means that the last number in
(4.14) is never the minimum of the three numbers listed; hence

inf  H(x, y)=Min{I(p+1)""", I'g+ 1)~}

Ogsx, y<m

This completes the proof.

5. REMARKS
It is worth pointing out that inequality (1.3) of Theorem ! implies

Theorem 2 in the case p=2. Since u(z)} is concave if and only if u(l —¢) is
concave, (1.3} may be written in the form :

fl w(r) o(6)(1 — )" dit

n+1 1 . 12 v i 1/2
> f2(n+2)U0 )1~ 1) dt) (L v2(1)(1 — 1) dt) , (5.1)

n a positive integer.

Now let # and v be nonnegative and concave in 0 <7< oo. Fix x, x>0,
and replace u and v in (5.1) by u(n#/x) and v{nt/x). The charge of variable
nijx =y gives

f:x u(y) v(y) (1 _fny_)” dy
> /2(’;112)([:““2(;»)( —g)ndy)w (5.12)
x (f:/x v3(y) (1 wfj—;—]) dy)uz.

Letting n — oo, we obtain

| u v e ay

1=, "mxy 12 ¢ o\ '
z—ﬁ(jou(y).e ) ([[rme=a) . 63

Finally, we observe that the method used in improving Theorems 1 and
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is clearly limited by computational difficulties; hence the absence of a

weighted Lf-version,

L}l w(r) o(t) * dt = CE) (E u(1)” t* dt)lfp (J-Ol b(1)? 1 dt)l/q:

of the Bellman—Weinberger inequality (1.2) and other rather obvious exten-
sions. However, we have not been able to craft our proofs with other
methods that offer the potential of greater eiegance. For example, a proof
that reveals the very essence of inequality (1.1) can be based on monotone
rearrangements [12, Chap. X]. Also, in [13], Karlin and Ziegler illustrate
the role of generalized convexity in deducing inequalities of Favard [9],
Berwald [3 1], and Borell {5].
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