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Abstract: Let K. = {z:lzl <r},r> 0. For givene, 0 < o <o ,d, 0<d < 1 and M, 1< M < oo,
let S{a,d,M) denote the class of univalent and normalized « starlike functions f in K4 with

Kg € f(Ki) C Kpe The authors show the existence of a function F € S{a,d,M) with the properties:
{a) log ﬂf-)-, zZE K‘E' isunivalent, (b} if { € S(a,d,M), then log ﬂzl), z € K4, is subordinate to
-[og F—(le +Z€ K. Letting a— 0 they obtain a similar subardination result for normalized starlike

univaient functions. They then point out that these subordination results solve and give unigueness

tor a number of extremal problem in the above classes.

A.M.S. subject classification 1971: Primary 30A32, 30A34, 30A38.






1. Introduction. Given o, 0 < a <o, let S{a) denote the class of normalized a starlike
sunctions fin K = {z: izl < 1}. Thatis, f € S{a) if and only if £{0) = 0, f(C) = 1, z°1f(z)_f'(z) #0
{z € K}, and

(1.1) aﬁe{1+—ull}+(1 —a) Refliill} > 0, zE K.

The class S{) was first considered by Mocanu [12]. The following facts about S{a} are known

{see Miller [11]),
{1.2a) Each f € Sla) s starlike univalent,
(1.2b)  Slog) C S{arq) whenever 0 < oy < ay <eo,

(1.2¢) i1f £ € S{a) and bounded, then " is in the Hardy class H1,
(1.2d} For given f € S{a), there exists a starlike univalent function g satisfying ¢{0} =0, g'{0} = 1,

and,
Hz Vo1 via) = (glz)fn) 1%, ze K.

Here the 1/« powers of the above functions in K are defined to be 1 atz = 0. We note that S{1} is the

class of normalized convex functions.

Forgivend, 0 < d < 1,M, 1< M<eo,and o, 0 < a<eo, let S{e,d,M) denote the subclass
of functions f € S{a) that satisfy:
{1.3) d<Ifiz)/zl < M, zEK.

We observe that S{a,d, M) is compact, as follows easily from {1.1) and {1.3). Then in this paper we

shall prove the following theorem:

Theorem 1. Leta, d, and M be fixed nonnegative numbers satisfving 0 < o oo, 0'<C d <K', and

1< M <oo, Then there existsa funciion F = F(- od M) € S{ad,M) with.the following

properiies:

(A} The function g{z) = log -F—%Z-)-, z€ K, (g{0} = 0) isunivalent and convex in the direction of the

imaginary axis,

(8) Iff € S{ea,d M}, then log %—Z), z € K, is subordinate 19 g-

In order to describe F we first make the following definition.
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Definition 1. Let « begiven, 0< a < oo, Then v issaid tobean o curve in the w plane, if

there exists a line in the ¢ plane.§not containing { = O, which is mapped onto v hy a continuous_ «

power of §.

" Second, we let 0F denote the boundary of a setE,and Kp={zlzl <1}, 0< ¢ <oo. LT#FT,

Third, we let 8(M,«) denote the radius of the largest disk with center at the origin contained in f{K}
for ali f € S{w,0,M). Here aand M are fixed numbers satisfying 0 < a <ooand 1< M < oo, it

is easily seen that S{e,d,M) = S{w, 8{M,a),M} for0 < d < 8{M,a). Hence in describing F we
assume for given a and M as above that §(M,a) < d < 1. For such values of «, d, and M we now

descrive OF(K}. Ifd = §(M,a), then 9F(K) contains ,

(i}  An arc with endpoints C,E, of the a curve tangent to oKy at —d.
If ${(Ma) < d <1, then aF(K) contains
(i) Anarcof 3K through —d with endpoints A, A,

") Two ares with endpoints A, C, and K E of the two o curves tangent to aKd at A and A

respectively.

Either (a) 0 < C=C <M or {b) C#C,M<oo,and ICl =M. If{a) occurs, then 3F(K) is the arc
in (i) for d = §(M,a}, and the union of the ares in {ii} and (iii) for 8(M,a) < d <1. 1f (b) oceurs,
then 8F{K} contains

{iv)] Thearcof 3Ky, through M with endpoints C, C.

9F (K} is now the union of the arcs in (i) and {iv) for d = 8{M,c), and the union of the arcs in (ii)—{iv)

" for §(M, 9 <d < 1. This completes the description of 3F(K).

The function F is uniguely determined by the above description Qf oF (K} and the requirement
that F € S(a,d,M), as we show in §3.

We remark that Theorem 1 is well known in the simplecase o =1, M =00, d = %—. In this case it

is a simple consequence of the fact that a normalized convex function is starlike of order % {see

Suffridge [15] for a proof of this fact). However, in all other cases Theorem 1 is new. The

subordination result in (B) implies the following corollary (see for exampie Golusin [4, Ch.8, §8]).

Corollary 1. Let «,d,M, and F be as in Theorem 1. Let & be a given noncorstant entire function.

1f 1 €8{a,d,M), then







{A} Forgiven zG K—{0}

i0
Re{d[log %1}] } < max Re{d[log El%_zll 3,
<o <2n e'vz

(B) Forgivenr, 0< r< 1,and A >0,

I 2 :
fO’T frell)Adp < foﬁ IF(rel®)iNdo |

(C) Eoragiven positive integer N > 2,

N N
T a2 < X IARe,
k=2 k=2
where fiz) =z+ 2 akzk and Flz)=z+ Z Akzk, ZEK.
k=2 k=2 P

Equality holds in any one of (A}, (B, or (C) only if for some real 0 , f{z) = e 0 F(elf 2), z € K.

We note that with the appropriate choice of ¢ in Corollary 1, some of the classical extremal
problems follow for S{e,d,M}. For example, the quantities {z}/zl, 1Arg f(z)/z], Re{[-ﬂzl}—] p},
wherelzl=r, 0 <r < 1,1 € S{o,d,M)}, and p >0, are all maximized or minimized on dK, by F.

We remark that Krzyz[10] proved (A} of Corollary 1 for S{1,0,M), and Barnard [1] proved (A} of
Corollary 1 for 8{1,d,M}). However, they did not show the F in their respective classes was the
unique function with property {A). Also Miiler (11) proved (A) of Corollary 1 for S{a,0 00},

0 <o <eoand diw) = £w,

Nextfor fixedd, 0 << d < 1,andM, 1 < M < o , let S*{d,M) denote the class of normalized
stariike univalent functions f in K which satisfy {1.3}). We obsérve forgivenr, 0 < r<1,and f€S*{d,M)
that f{rz)/r, z € K, is in S{e,d, M) for « > 0 small enough. Moreover if f,gES*(dM)and 0 < r <11,
then the fundtion z[#z)/z) [g(2)/z] 1", z € K, is in S*{d,M). Using these observations and Theorem 1,

we easily obtain in §9, the following theorem.

Theorem 2. Let « d, M, and F be as in Theorem 1. Let F*{-,d,M) = lim F{*,a,d,M). Then
‘ o) ,

F* € 5*(d,M) has the following properties:

(A) The function g{z) = log E:ZLZ—)—, z€ K, {g(0) = 0} is convex univalent,

{8) Ll fe S*{d,M), then log %Z'), z € K, Is subordinate to g.






Theorem 2 implies, as in the discussion after Theorem 1, the following corcliary.

Corollary 2. Let d and M be as in Corollary 1. Replace F by F* and S{o,d,M) by $S*{d. M} inCorollary 1.
Then Corollary 1 jsvalid for F*,

We remark that Theorem 2 and Corollary 2 are well known in the simple case d = i M=oe
{see Goluzin [4, Thm.1, p.631]}. Moreover, Suffridge [16] proved (C} of Corollary 2 for $*{d,e}
and N = 2. Barnard [2] proved (A} of Coroilary 2 for S*{(d,M) and Pd{w) = £ w, With these

exceptions, Theorem 2 and Corollary 2 are new results for starlike functions.

Forgiven M, o, d, as in Theorem 1, let f be in S{o,d,M} and put D = f{K]. Then the proof of
Theorem 1 is based upon a geometric description of 8D and a use of the Julia variational formula
similar to Krzyz[10] and Barnard {1]. This geometric description of 4D is obtained in Lemmas 1-3
of §2. In §3 we use Lemmas 1-3 to determine 8{M,a} and show F € S{«,d,M} is uniquely defined
by {i}—(iv). |

in 84 we define our variations of D when oD contains an arc of an o curve. In §5 we show
that the Hadamard variationa! formula holds for the Greens functions of our varied domains, In §6
we deduce the Julia variational formula from the Hadamard variational formuila, and show how it
can be uscd 1o solve an extremal problem. In §7 we prove Lemmas 4-7. We use these lemmas in §8

to prove Theorem 1. In §9 we deduce Theorem 2 from Theorem 1 and describe oF *(K,d,M).

As motivation for the proof of Theorem 1, we first remark that it turns out {A) of Coroilary 1
implies Theorem 1. Second, we remark that our geometric description implies 8D is made up of a
finite number of arcs with the following property: each arc is the image, under {%, of an arc
contained in the boundary of a convex domain. Since the Julia variation is a local boundary
variation, it follows that the solution to (A) of Coroliary 1in ${w,d,M) should be obtainable from
a local use of conformal mapping and arguments similar to those of Krzyz[10] and Barnard {1].
Furthermore, a general description of JF{K,o,d,M} should follow from considering local « powers
of fon aF(K,1,d,M). This is indeed the case, as we see from (i)--(iv). We emphasize, though,
that the extremal functions in Theorem 1, corresponding to different values of «, do not bear such a
simple relationship. Even though the bounds on F{iKx,d,M) make it quite difficult to obtain an

“explicit representation formula for F, this function is completely described by its geometric
properties. Since the Julia variational method allows us to preserve both bounds and the class, it
seems the most naturai way 1o prove Theorem 1.

Finally the authors would like to thank Professor Frank Keogh for some helpful comments

concerning the geometric description of S{a),






2. A geometric description of the image domains of o starlike functions. Given w #0, let

Argw, - < Argw < 7, denote the principal argument of w. Let 4 be an « curve as in

Definition 1. Since y is the image of a line, not containing ¢ =0, under a continuous o power of ¢,
“it follows for 0 < o << 2,-that ~ divides the w plane into two disjoint domains. Moreover the

domain containing w = 0 is starlike. However for o> 2, + intersects itself, and consequently

there exist rays through w = 0 which intersect v more than once, Since we shall be studying

starlike domains in which part of the boundary is an arc of v, it is necessary to make the following

definition for fixed o, 0 < o < oo,

Definition 2. Let § denote a closed arc of an o curve . Then we shallcall § ap o arcof v,

if each ray through w = 0 intersects § in at most one point.

We shall determine the number of a arcs with endpoints A,B{A+B) in the w plane. Cleariy the
number is zero if either Arg(KB)= 0, or one of A and B is zero. Hence we assume A #0, 8 #0,
and Arg (KB) #0. Next we draw the rays from w = 0 through A and B. These rays divide the w
plane into two sectors, T4 and To, with anguiar openings 0y and 0o respectively. We fnay suppose
that 0<< 0¢ < 09 < 27, since otherwise we renumber. We observe that if § is an « arc with
endpoints A and B, then either §CTq U {AB},0or §C To U {AB}, as follows from Definition 2.

We ciaim for fixed &, 0 < @ <o, that
{2.1a}iet i be fixed, i=1 or 2. Then if 0 < 8; < ma, there exists exactly one « arcf with endpoints Aand B -

forwhich § C T; U {ABL fra< 8;, there does not exist an « arc § with endpoints A and B for which

BCT;U {AB}.
To prove (2.1a), let h; denote an analytic 1/« power of w in T; (i=1 or 2} which is continuous

on ¢T;. Then the line segment with endpoints h{A) and hi(B) is contained in hi({T:) U {hi{A), hi{B)},
ifand only if 0 < 8; <ma. Using this fact and considering the inverse mapﬁing to h; , we get (2.7a).
From (2.1a) wesee for 0 <o <1thatif0 < lArg(EB)E< #wa, then there exists exactly one «
arc with endpoints A, B, For 1< «a <o, it follows from (2.1a} that there is at least one « arc with
endpoints A, B (Arg(KB)?E 0). Also for 2 < & <oo, there is exactly two a« arcs with endpoints
A, B (Arg A B #0). | |
Next we determine a geometric criterion for a bo_ﬁnded gomain to be a magnification of the
image domain of an a starlike function. This criterion is given by Lemma 1. {n Lemma 1, § denotes

the « arc with en&ipoints A, B, satisfying g C T1 U {A Bl
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f.emma 1. Let D be a bounded domain containg w = 0 with the property that each ray through w =0

intersects 2D in exactly one point. Let a be a fixed positive number and suppose there exists a

sufficiently smail 1> 0 such_that whenever A,B€ 9D and 0 < lArg(K Bli< 1 < wa, then either

fCD U {AB} or $COD. Thenthereisa function_g € Sle) and a number t > 0 such that 1g{K) = D.

Proof: Let A, B, be any two points of 8D with 0 < lArg(K BlI< n < wa. Define T4 and
BC TqU {AB} relative to A and B asin (2.1a). Let hq bean analytic /o power of w on T 1 which
is continuous on 9T4. Put D= DNTq A= oD N T1, and suppose that E, F, E ¥ F, are any
two poinis of A. Then from the hypotheses of Lemima 1 {with E, F, replacing A, B}, either the
line segment connecting h4(E} to hq(F} is contained in h1{\} or itis contained in hq(Dq) U {h1(A),h1(B)}.
Since 3hq(D4) consists of hq(A) and segments of two rays from w = 0 forming an angle less than m,
it follows that h1(D4) is convex. Hence h4{\}) may be approximated by a poiygonal arc 7, made up
of chords connecting points on hq(A), with endpoints b (A), h1{B). Ifn a positive integer is given,
then T can be chosen such that each point of 7 lies within % distance of a point of h{A}. Also, 7 can
be chosen in such a way that a piecewise céntinuous argument of the tangent to 7 does not decrease
as 7 is described in the counterclockwise direction with respect tow =0,

Taking the preimage of 7 under hq, we find that A may be approximated by an arc
07 C Dq U A U {A,B}, made up of a arcs, with endpoints A, B. Moreover each point of 0q is
within C/n of a point of A, where C is a positive constant which depends only on «and D. Also the
tangent to gq rotates counterclockwise as we pass from one o arc 1o another in the counterclorckwise
direction. Since 8D may be written as a finite union of sets of the form A, we see that 90 may be
approximated by a Jordan curve o with the same properties as ¢4. The bounded domain Din},
with 9D(n) = g, Is clearly starlike with respect to w = 0. Let g, denote the Riemann mapping
function satisfying g,{0) =0, g,"(0} > 0, and g,{K} = D{n}. Then g, is continuous in KU oK
and a continuous 1/a power of g, maps aK—{1} onto a polygonal arc. Moreover, as dK—{1}
is described in the counterciockwise direction, apiecewise continuous argument of the tangent
1o this bolygonal arc does not decrease. Using this fact and a Schwarz-Christophel type argument

we deduce that

m -iOl
aRe{l+zg,"(z)/g, '(2}} + {(1—ad Re{zgn’{z)/gn(z)}= Y by Re 1_—3:3__:_2_ , 2E€EK,
T . - -1
‘ ‘ B Ve Ky

where by and @ are positive, andmis a positive integer. Hence

(2.2) 04/85'(0) G S{w).






The sequence (gn}‘%O is a uniformly bounded sequence of univalent functions in K. Moreover
from the construction of D{n}, we see that gn(K) = D({n} = D in the sense of kerne! convergence.
Using these facts and applying a theorem of Caratheodory {see Goluzin [4, Thm.1, p.55}}, we
deduce that ILngo 9 = S, §'10) >0, and §(K} = D. Using the compactness of S{a) and {2.2), we

" further deducne that §/§'(0) = g € S{a). Hence Lemma 1 is true.

To continue our geometric description of the image domains of o starlike functions we prove

Lemma 2. Let f € S{«,0,M) for some M <o and put D = f(K)}. Then each ray through w =0

intersects D in exactly one point. IfA, B, A# B,arein oD and if § isan a arcwith endpoints
A and B, then |
{a} eitherfCaDor C D U {AB],

(b} if 2 denoptes the component of D—p containing w =0, then there existsa g€ Sla) andt >0
stich that t giK) = £,

Proof: Let gz} =f{rz) forz€Kand 0 < r <1, Put D, =g.(K), and I (0} =gle i0), 0 €46<27.

Then from (1.1} we see that
o Re {1 +z g/(z)/g{z)}+ (1—a) Re{z g lz)/g (z})} > 0, z € K U 3K,

d. I‘r(e)). “Then the above

Letlog I'p and log I} be continuous iogarithms of ', and T', (I['}{0) = 90

inequality implies that

A o119y v ()] = —a) Im &=
alm £ logIP /4 1(9) Ty(6)] = ot im < tog [7{0) + (120 im > log }{0) > 0.

Geometrically this inequality means

{2.3a) The argument of the tangent to 1";,[/0‘ does not decrease as & increases for a continuous 1/«
powoer of Pr‘ |

'Using (2.34) we now prove Lenuina 2. Let A, B, and f§ be as in Lemma 2. Chooso a seclor V
containing § in its interior and of angle opening ¢, 0 < ¢ < wa. This choice is possibie by (2.1a).
let p be an analytic 1/a power of w on V. Then {2.3a) implies that p{V N D,) isconvex, as is

easily seen. SinceD= U D, and D C D, s<r, it follows that
O<r«1

(2.3b})  p(V N D} is convex.
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Hence the line segment £ with end points p{A), p{B], is either contained in (VN DY U {plA)p(B)}
or in p{ A0 N V), Using this fact and the inverse mapping to p, we deduce that {a) of Lemma 2 is truc.
Also since each ray through the origin intersects p(V N 8 D} in exactly one point, we see that V. N 8D like-
wise has this property. Henge each ray through w = O.intersects 3D in exactly one point. To prove
" {b) of Lemma 2 we observe that p(V N Q) is equal to the colmponent of plV N D}—L containing
zero in its boundary. Hence p{V N £} is convex. Using the inverse of p, it follows that the
boundary points of & in a sufficiently small neighborhood of A satisfy the hypotheses of Lemma 1.
A similar statement holds for the boundary points in a small neighborhood of B. Since n > 0 may he
arbitrarily small in Lemma 1, and since 82 consists of a part of 0D and §, we find from the above
discussion and {a) of Lemma 2 that 3} satisfies the conditions of Lemma 1. Applying this lemma
we deduce that {b) is valid. This proves Lemma 2.

Again supposedthat f € S{a, 0, M) for some M <oo, Then f'& " (see {1.2¢)} and hence
o) = f(em), 0 < 9 < 27 isabounded rectifiable curve in the w plane, (see for example
Goluzin [4, Thm.1, p.408])}. Letw & I' and suppose that [ has unigue left and right hand
tangentsatw. |T < isan o curve through w, then we shall say ¥ is tangent to [ from the right
(ieft) at w, provided the tangent to ¥ coincides with the right hand (left hand) tangent of I' at w.

With this understanding we prove

Lemma 3. Letfand D beasin Lemma 2 and put I" = 30. Then I' has a unique right {left) hand

tangent at each w € ['. Consequently, there exists exactly one o curve v which is tangent to I' at w

from the right (left). 1f 8 C « is.an e-arc with one endpointw, then § N D = {¢}.
~J

Proof: Lemma 3 follows easily from (2.3b} and geonﬁetric properties of convex domains, We omit

the detalis.

3. Applications of Lemumas 1-3. We now determine 8{M,x} (see § 1) for fixed M and «
satisfying T< M <o and 0 <a <oo. Todothiswe letf, D, and [’ be as in Lemma 3 and put

d{f) = min{lwl: w € I'}, We shall use the following remark which also will be used in §4 and §8;

Remark 1. |f wy €T is such that lwl = d(f), then there is exactly one o curve v tangent to I at w,,

from either the left or right. Furthermore, v is tangent to aKd(f) atwg.

i
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Remarl 1 follows easily from Lemma 3 by way of contradiction., Let 1,77, be the a curves tangent
o ' at w,, from the right and left, respectively. Ifyq were not tangent to a|<d(f) at w,, then y4 would
contain‘points ot Kd(ﬂ arbitrarily near w,. Hence there would exist an o arc § C yq with endpoint w and
BND+ £¢}. This inequality contradicts Lemma 3. Therefore v is tangent to aKd(ﬂ at w,. Repeating the
argument we see that vo is tangent to aKd(f) at wy. Since the definition of an acurve implies there is

exactly one « curve tangeni to a=<d(ﬂ at w,, we must have yq = ¥ o
Ta continue the determination of 6(M,q), we need some notation. Fir_sn';—g';i_\.;en a simply

connected domain G containing w = 0, we shall let m.r. G denote the mapping radius of G {see

Hayman [5,p.78] for a definition). Also, we shall say G is o starlike, if there exists h € S{a} and

1> 0 such that th{K) = G. Second, for given M and « as above, and given s, 0 << s <M, we draw

the « curve v tangentto K at—s. From the definition of v we see that either v intersects

itself at a pointt=1t(s), 0 << © << M, or v does not intersect itself in Ky, U 8Ky, and v intersects

3Ky at Mei"b, Me‘w’, forsome ¢ = ¢(s), 0 < ¢ < w. Inthe first case we et £i{s} denote

the bounded domain containing w = 0 whose boundary is the two « arcs of v with endpoints

—s, t. in the second case we fet  {{s} denote the bounded domain containing w =0 whose

boundary consists of the a arc of v with endpoints lVlei¢, Me'w, and the arc of 3K, with endpoints

Meid’, Me‘w, which contains M. We claim that £2 (s} is a starlike. Indeed, it is obvious that 38{s}

satisfies the hypotheses of Lemma T except possibiy in a small disk about t in the first case or in

small neighborhoods of iVIeid), Me'i('b, in the second case considered above. Using (2.3b) with A and P

properly defined, it is easily checked that 2§2(s) also satisfies the hypotheses of Lemma 1 at these

boundary points. Hence £2(s) is « starlike for o <s < M. Next we observe that

Q{si) - .Q(sz) C Ky for 0 <s;< sp < M, as can be seen by examining aﬂ(si) {i=1or 2},
F ¥
Using elementary properties of subordination, it follows that

0= lim m.rls) < m.r.Q(sﬂ < m.r.Q(sz) < fim mrS2{s) =M,
s~+0 s>M ‘
for 0 <sq < sp < M. From the above inequality we see there. exists a unique sy, 0 < so< M,

for which

(3.1} m.r.isy) = 1.

Finally we determine &8{M,a). Let f,I", D, and d{f) be as previously defined in §3. We
may assume —d{f) € T, since otherwise we rotate D. Then from Remark 1 and Lemma 3, we
deduce that £ [d(f)] DD and there upon, m.r.Q2[d{f)] = m.r.D =1. Hence, §2(sgh C .Q.{d(f)],l
and so, s, < d{f}. Since sy} is the image domain of a function F € S{a,0,M}, we conclude that

§(M o) = S¢
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Next in §3 we show for fixed «, M, and d satisfying o < o <o, 1 < M < oo, and
5{M,0) £ d <1, that F{*,«,d, M) € S{a, d, M} is uniguely defined by (i}—{iv) of §1. To do
this forgiven 0, O < 0 < 7, draw the « curves 7, ;, tangent to 0 Kd at dem, de'm,
respectively, Then either 77 intersects ; atapointu=u(f), 0 <u< M,or v and :; intersect
SKM at points P =P(0),P =P (0), respectively with P # P. In the first case we let Ald,0) denote

the bounded domain containing w = 0 whose boundary consists of

(+) thearcofd Ky with endpoints dejo, de"io, containing ~d, and o arcs of v and _')-r with end

points deio, u, and de'io, u, respectively.

In the second case we let  A(d,0) denote the bounded domain containing w = 0 whose boundary
consists of the arc of a=<d in {+}, the acarcs of v and ¥ with end points deia, P, and de'w, 15",
respectively, and the arc of 3K, with end points P, FT, containing M. We also put Ald,n) = Q{d),
where $Ad) is as defined previousiy in §3.

Again using (2.3b} and Lemma 1, we see that A {d.9) is a starlike for 0 < 8 < 7. Furthermore
A(d,01) g Ald,04) for 0 < 04 < 805 < . Hence,

(3.2) d=limm.r.Adg) < mr.Ald8) < m.rA{d, o) < mur.Aldg),
6—0 B

for O<91<02<w.

Now suppose that F € S{a, d, M) is a function for which 8 F(K) satisfies (i}—(iv) of § 1. |f
d = 8{M, «}, then from (3.1) we see that F(K) = A{d,m) = Qs ). If (M, ) < d <1, then
from (3.1), (3.2}, and the fact that A [§{M, o), 7) % A {d,w), we see there exists exactly one
b, = 9,{d) satisfying 0 < 0 o <7 and for which F{K) = Afd,0,). We conclude for a fixed ¢,
O0<a <o, M, T < M<oo,andd, §(M,a) < d<1,that F € Sla, d, M} is uniquely defined by
{i}—{ivl of §1. The situation M = oo, 0 < a <o, 8{oo, @) < d <1, can be handled by treating

it as a limiting case, as M — oo, 0f the previous cases considered. We omit the details.

§4. Boundary variations. Again we assume that M, «, d, are fixed.numbers satisfying 1 < M < oo,
0< a <eo,and 8{Mod < d< 1, Iff € Sla, d, M), wealsoput D = (K}, "= 2D. Let

A B{A+B)and E, F (E # F) bein . We suppose that I" contains an « arc § with end points
A, B, and anaarc u with endpoints E, F. We further suppose that u and S are disjoint, except

possibly B=F or A=E. Let V and N be sectors drawn from w = 0 which contain g and u in their interiors,

respectively. Thanks to (2.71a), we may choose V and N to each have angle opening less than ro.
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We let p and ¢ be analytic 1/« powers of w on V and N respectively. Then we shall define the

following variations on [" {see Barnard {1} for similar variations in the convex case),

l.  Aninward variation whenever 4 is not tangent to 0K g, and the right and left hand tangents io I’

at F do not coincide,

i1 An outward variation whenever the right and left hand tangents to I' at A do not coincide, and

B satisfies either (a) or {b}:

{a) iBl=M,

(b} Bl <M, and the {eft and right hand tangents to I' at B do not coincide.

Hl  An outward sliding of § when I N 9K contains a set of distinct points, {Qn}‘-’f, with lim Q. =A,
n—)OO

and B satisfies either (a} or (b) of 1I. | )

Variation | wili be defined in terms of a parameter § for 0< § < 6o (60 small) in such a
way that if ['1{8) denotes the variation of I, then I'}{(8) isthe boundary of an a starlike domain

D4{8), and

(4.1} I‘1{5) C {z:d < lzi < M} = L{d,M}.
Furthermore,
{4.2) D1(52) g D1(§1}, whenever 0 <3§¢ < 8y < &g,
{4.3}) U D1(5) =0,
O<6~<JO

To define | let F, be a point on {['—u) NN which is near F. Draw the a arc u, whose endpoints
are £ and F j contained in N. It is possible to draw such an arc for ¥ near F by (2.1a), Since Fis
as in | it follows from {a) of Lemma 2 that 4, € D U {E,F_}. Hence the smallest angle between

the tangents to u and u at E is positive. Let & > 0 denote this angle.

Now suppose that Fq, Fy {Fq % Fy) are points on the arc of ' N N with endpoints F;, F.
Also we suppose that Fq % F, Fo & F. Draw the aarcs uqand uog with endpoints E, F 1, and E, F2,
respectively. Let §;, i=1,2, denote the smallest angie-between uiand u at E. Asabove we observe
that K C DU {E,Fi} and there upon that 52>0. Alsosince u; € DU {E,F-j},we must
have w4 N (“2 — {E}} = {¢}. Hence 61 ¥ 8y Let DT(:S]), i=1,2, denote the component of

D—u; containingw =0, From Lemma 2 we see thatDq{8;) is an « starlike domain and D4(8 ;) g- D.
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Furthermore if 0 < §7 < 85 < §g, then D4(89) % D4{84). To see this observe that uy is an «
arc connecting two boundary points of D4(84). Furthermore since &4 89,y C Dqldq) W {EFo

Since Dl(‘SZ) is the bounded component of D1(61}—p2 containing w = 0, it follows that {4.2) is true.

Weput 6 = 51 and let F1 vary subjgct to the above restrictions. Foreach 6, 0< &8 < § 0’
" we obtain an a starlike domain D (8) (4;: D with boundary T'q{8). Moreover, from the definition
of D¢(8) itis clear that (4.3) hoids. To prove (4.1} it suffices to show that K C D415 ) since
01(60) COB)CD for 0 < &< B To do this recall that by assumption & is not tangent to
K. Then by Remark 1, # has a positive distance from oK. Hence for ,‘So >0 small

enough u, also has a positive distance from 9K and so, Ky & D 4{85)

Variation 11 will be defined in terms of a parameter ¢ for 0 <e < ¢, while variation 111 will be
defined for e > 0 in a sequence, z = (ej), with ilg}oo € = 0. The variations will be defined in such a way

that if I'»{e) denotes the variation of T', then ['5{e} is the boundary of an a starlike domain Dole ), and

{4.4) Tole) € Lid, M),
(4.5} Dz(eﬂ% Doleoh, whenever 0< € < eg,
(4.6) N Dole)=D.

We remark for later use that if the right and left hand tangents at A coincide, then our method of
variation in 1 will still produce a starlike domain Dz(e) satisfying (4.4}—(4.6).

To define 11{a), choose & point B, € {d Ky,—0 D} NV near B with the property that the ray
from the origin to B, intersects §. Draw the o arc §, whose endpoints are A and B which is
contained in V. Again it is possible to draw such an arc for B, near 8 by {2.1a). Leteg >0

denote the smaliest angle between f and [, at A.

Now suppose that B, Bz-(BT * Bo) are points on the arc of 3Ky NV with endpoints B, B,
Also we suppose that Bq # B, B * B. Draw the « arcs (4 and o with endpoints A, B4, and
A, By, respectively; Let €;(i=1,2) denote the smallest angle between f§;and § at A. Clearly
€9.€p > 0 and €1 + €o- Let DQ(Gi)' i=1,2, denote the domain whose boundary is the union

of the ares: §; I'—, and the arc of OKM with endpoints B, B;, contained inV.
We claim that D2(e i)' i=1,2, is o starlike when B is near B. To see this note from (2.3b) that

p{V N D} is convex. Also dp(V N D} contains the line segient & with endpoints p{A}, p(B}.
Since A is as in }1(a), we see that the left and right hand tangentsto  dp(V N D) at p{A} do not
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coincide. Using these observations and well known geometric properties of convex domains we

deduce for given i=1 or 2 that the bounded domain with boundary,

(it the line segment with endpoints p{A}, p(B,),
(ii} the arc of p(Ky; N V) with endpoints p(B), p(8)),
(i) op(v N D)=,

is convex. Also the boundary of this domain is contained in p[KM N V], Since this domain is also
equai ta p[Dolejh N V], it follows, upon taking the inverse of p, that Dyle;} satisfies the hypotheses
of Lemma 1 and that 3Dqle;) C L{d,M). Hence Dole;) is astarlike and I'ple;) = 0Dyle) satisfies
{(4.4). _
Next we prove (4.5}, If 0 < ¢; < ex< ¢, then from Lemma 1 we see that §¢C Doleg) U {A B4}
It follows that Dole4) is the bounded component of Do{eg)—f4 containingw = 0. Hence (4.5} is
valid. Put € = ¢q and let By vary subject to the previous restrictions. Foreach ¢, 0< € < ¢,
we obtain an « starlike domain Dyle) which satisfies (4.4)—{4.5). Frorﬁ the definition of Dyle} and

{4.5) we also see that{4.6) holds.

To define |1 (b}, let y bethe a curve tangentto I' at B which does not contain 8. Let B,
1B, <M, beapointon v near B with the property that the ray from the origin through Bo
intersects § . Let §, denote the o arc with endpoints A and B which is contained in V. Let
¢, ~ 0 be the smallest angle between § ‘and B, at A. Now let B4 + B be a point on the arc of
v NV with endpoints B, B. Draw the o arc B, with endpoints A, B4. Let e > O denote the
smallest angle between 8 and- Bq atA. Let Dz(e) denote the domain whaose boundary is B1.
-5, and the a arc of v with endpoints B, 81, which is contained in V. Then Do(e) is an a starlike
domain with boundary Igle) for 0 < e < e,. Furthermore, {4.4)—(4.6) are true. The proof of
these facts is simiiar to the proof used in |l {a). We omit the details.

To define |1l when B satisfies |1 {a}, we first note from Remark 1 that § is tangent to oKy at A,
Let Ag € akygN T' NV be near A (A, ¥ A). Lety be the a curve containing §, and let v, be the
. o curve tangent to 0Ky N I" at A, Let P, be the point of intersection in V of v and v, which is nearest

A. Let g, > 0 denote the smallest angle between the tangents to v and v, at P,
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Now suppase that Ay ¥ A is apointon the arc of aKd N VNI with endpoints AO,AF Draw
the o curve 74 fangent to 0 Ky N T at Ag. Let Pq denote the point of intersection of yq and vy in V which is nearet
A.lete,0< ¢ < ¢ be thesmallest angle between y and ~q at Pq. The bounds on ¢ may be
established using the function p and elementary geometry. Let By be the pointof 09Ky, 4 which
| is nearest B. We claim for ¢g small enough that there exists an aarc §q of ¢ NV with endpoints
Aq,Bq. Again this is casily seen using {2.3b) and the function p. Let ¢4 be the arc of I' with
endpoints A, Aq, which is contained in V. Finally let‘DQ(e)_ be the domain whose
boundary is the union of the arcs, g4, '~ {p U (}'ﬂi}, and the arc of dKy, with endpoints B, B4,
which is contained in V. Put 'ple) = dD5le). Next we let e vary subject to the above restrictions. Since
' {Qn}fi"’c IK4NT', we obtain a sequence,(Dz(e))GEz , of domains with boundaries, ['yle}, eEz, We assert that
Dole), €Cz, is o starlike and (4.4)-(4.6) are true. The assertion that Dole) is a starlike may be proved using

{2.3b) and Lemma 1. {4.4) follows from the definition of I'o{e). (4.5) is a consequence of Lemma 3 and the
fact that the v corresponding to e is tangent to [oleq) for 0<gq<en<e,,. (4.6} then follows from {4.5),
the definition of Dz(e), and the fact that r}m’aw Q,=A {see 111},

To define |11 when B satisfies 1 {b) we choose a point Ay, €T'M 3Ky near A, Ay ¥ A, and
let A; beapointonthearcof 3Ky NT with endpoints Ay, A. With this notation v, 75, and 74
are defined as in |11 {a). Let ™ be the «curve tangentto I' at B which does not contain 3. Let
Bq be the point nearestB inV where +y; and ™ intersect. With this notation we define § 4 relative
to Aq, By, and g relative to A, Aq, asin Il {a). Ppand e >0are also as in lil {a). Let Dz(e)
be the domain whose boundary is the union of thearcs §4,'—{§ U oqt ,and theaarcof 4" NV
with end points B, B1. Then Dole) is a starlike and (4.4)—(4.6) are true, as follows from an argument

similar to our previous arguments. We omit the details.

We now consider the effect on D of applying an outward variation of I, as in 1i or 11i, followed
by an inward variation of the form I. To simplify our notation we put Y= (O,eO] ,if D isvaried asin
11, and Y = z if D is varied as in 1il. First applying variation ! or 111 we obtain foreache, e €Y, an
« starlike domain Dole) with boundary I'p{e). Also, I 5le) contains an o arc ul€) with one endpoint
E,and u C ufle) {u = u{e) unless B = F). Next we apply variation I with ule), T'nlel, replacing p, T,
ini. This is permissible if e, >01s small enough. Applying variation |, we obtain for each 3,
0 <§< §ylel, an astarlike domain D{e ,8) with boundary I'(e,8). We claim that §(e) does not
depend on e. This claim is clearly true if B # F, since in this case the inward and outward variations are
independent for small e, >0. If B=F, thenitis easily checked that D{e,8) is well defined fore €Y

and 0 < 8 < §,{e,), when e, € Y is small. Hence our claim is true and we may take do(€) = §,leq).
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Finally in this section we consider the equation

(4.7) m.r.D(el, 5) =1

for 0< 8 < & ole,) and e €Y, Here m.r.D{e,8), as previously defined, denotes the

mapping radius of D{e &}, We claim that the ordered pairs (¢ ,8) satisfying {4.7) define a
decreasing function & = §(e) for ¢ € YN {0,641, 0 <eq<e¢,. Also 8{e)>0as e=>0inY.
This claim is verified using (4.1)—(4.6), and the monoticity of the mapping radius. We omit the .

details.

We putDle) =Dle,8{e)l, e € Y N (o,eq], T'le) = 0De,b(e)], e € YN (o0,e4]. Wealso put
D(Q) =D, I'(0} = I. Then Dle) is a starlike and from {4.1), (4.4), (4.7}, we have

(48)  TIfe) € L{dM), e€Yq=[Y U {0}] N [0,eq],

{4.9) m.r.De)=1, e€ Y1

5. The Hadamard variational formula. From the definitionof D¢ fore € YN (0,61] we sée that
['{e) containsan « arc B1= Bq{e) with ¢ the smallest angle between g1 and the a arc containing
fatAorPq. Also T'le) containsan aarc uq = pqle) with (e} the smallest angle between M

and y at E. This observation will be used throughout §5. In the sequel the symbols, € -~ 0, iEE_rI]O, apply only

toe & Y1.
Qivene, € € Yq, et ge{-,w1) denote Green's function for D{e) with pole at w1 € Dle).

ttwq € D(0} isfixed, then

(6.1} lim [ge(ewyq) = gol-wq)] =0
eé—+0

uniformly on cdmpact subsets of D{o). - This inequality follows from the fact that D{e}—> D{0} as e = 0 in the
sense of kernel convergence, We remark for fixed wq & Die) that the outer normal derivative of
ge(‘,w1) exists ateach s € M1 U fq, except possibly at the endpoints of these arcs. We denote

. — ) . .
this derivative by 5%? (s,w1). We wish to show for fixed wq € D{Q) that

f
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a9 %(SW lp(s)—~g({EN

an 3 1’ (sH
-7 —g‘:’(s,o)%( W )M Ids! + o{e)

2r B bon an ip*(s)

ase— 0. Herepand ¢ are analytich— powers of win V and N respectively (see §4). Also, g = i5/14,

where

= 1 (B050))% BlSI=0lEN 1y
i oan [’ (s}

12 = f,@ [E-QO _Q.@:_QL_L [ds).
For wq = 0 the lefthand side of (5.2) is to be interpreted as the value of the harmonic function
o {w,0}-g.(w,0), w € D{0)ND(e), at w = 0. The term ole} in {5.2) is independent of wq{ when w1 fies In

a compact subset-of D(0). Formula {5.2) is essentially just the Hadamard variational formula {see Bergman

[3, Ch.8]). However since our variations are not strictly normal and since I need not be twice continuously
differentiable, we shall give the proof of {5.2).
Let wq be given in v D{e), and let A, A (w1}, denote disis aboutw=0,w=w1, of

EEYT
radius r > O respectively, which are contained in each D{¢) for ¢ € Yy Let plw,e} denote
the distance of w € D{e} from I'le) for e € Y. - Wealso let C denote a positive constant,

not necessarily the same at each occurence, which may depend on @, r, D{0}, and ¢ {see {4.8}), but not on ¢ or

weED,~{4 U A {wq)}. Then as a first step in proving {5.2) we show

{5.3) max {g, (w,wq}, g.{w,0)} < C plw,e)

forw& Dle)—{A U A{wgl}and e€ Y.

To prove (5, 3 ietf € € Y1, . bethe function in S{a,d,M} for which f, (K)=Dl(e). The

existence off is guaranteed by (4.8) and (4.9), Let K. denote the inverse of fe and note that

{5.4) e {w,0) = ~log Ik, ( )i,
w) =l {wq)

—I<G(w1) e lw)

ge(w,w1) = miog

forw€De})— {AUA {w1)}. We assert that

(5.5)  if (al—f, (b}l > C; Ib~al
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whenever a,b € K and {fc(b), ff{a)} C Dle)—{a v /_\.(w1) }. Here C4 is a positive constant which
has the same dependence as C defined previously. (5.3} is then an easy consequence of (5.4) and
(5.5). |

If1Arglf, (b) £, (@1 % and f (a), T (b}, are in Die)=[A U A (wyl], then clearly

c
lfelb)—~fe(all >C > 2 lo—al.

Hence we assume 0 < lArg[‘i’E (a} fe (bl i< ﬂz-o—‘ . Let R be a sector drawn from w =0 which contains

f.{a), T (b}, inits interior. We also choose R 1o be of angie openi'ng iess than %G-‘-. Let h be an analytic

1/ power of won R. Let Ag bethe a arc contained in R with endpoints f.{a), f.{b). Then since
h[R N Dfe}] is convex, the line segment o, . With endpoints h[f {a)], h{f (b1, is contained in

h{R O Dle)]. Since lArg[h a)) h{f (b))]l<'l'27— and mm{lf {a}t, If (b)) 2= r, it follows from
elementary geometry that min Ikl = \/— 1/0‘ Moreover since h maps )\ onto ¢ ., we deduce
Go
that §
5
(5.6} min lwl = (ig-}
w€7\e 2

i 7. denotes the preimage in K of 0, under hof&., then 7. has endpoints a, b, and

— = --dn—-- o
(8.7)  In[f, (b)]~hlf,(a)]! y ’dzh_fe(z)}ldzl.

Since f . € S{a,d,M}, and we have {1.2d), we may write forz & K—{Q} that

1 11,
(5.8) | L het, (@) =& 112 ™ i =Ly @/ @
where s starlike univalent and ¥ {0) =0, ol . itis well known that by, (22 =

It also follows from well known estimates for normlized univalent functions and (5.6) that 1zI=C, zE€7,
(see Goluzin [4, p.52, (10}] for these estimates). Using (5.8} and the above facts we get,
1 1
d 4, (S IY -
[Gheteta] > & G e T wc
forz€7.. From this inequality and (6.7) we deduce Ih(f{ ))—-h(fe(a))l = C ib—al. Since clearly

Ih{f (b)) =h(f(a))l < C it (b)— fe (all whenever {f (@), fe(bl} € Dle)—[A U Alwyq)] and

Arglf,(a)f ( 1< ﬂé"i, it follows that {5.5) is true.
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We now prove (5.3). We first note that
(6.9} max {g, (w,wq), g, (w,0)} < C,
when € € Yy andw € D{e)-[A U A{w.])] , as follows from the maximum principle for
C
harmonic functions, Consider the case when p (w,e) = -1—%- {(1—lk, (w1)l)., IC] as in (5.58}]. Then

from (5.9} we have

max {g.{w,wq), a.{w,0)} < 16 Cplw,e) - _
€ 11 9¢ G (1—ic, (w7l C plw,e)

Here we have used the fact that  sup Ik (w4} < 1. Next consider the case when

(—lk, woicy . EEYT
. In this case let Wy =W
16

Choose w* = w*{¢} € D{e) near enodgh w,, such that

plw,e) < ) in e be such that Iw—w_ 1= p{w,e).

0(

{5.10) min ike(W*H, %ke(w*)—ke(w'i) S

1
1k (W) K (wq) 2

and such that
5.7 iw—w*l < 2 p{w,e).

Then from (5.5} with a = ke(w), b=kg{w*), and (5.11) we deduce

(6.12) Ik (W)—k ;w*H < CTT Iw—w*1<2CTY piw,e).

Kk —k k *l . (W
Using {5.12) and {5.10).it follows for u= e (W ke wy) R eIk ﬂ,that

‘l—ke(wﬂ I<E{w) 1—ke(w1)k€(_w*}

. —1
— . 8C
=V iyt 2 =t Keti=ketwnit - 8CY plwel g
T=lkg{wq )l 1=l (w1l 2

Using this inequality, (5.4}, and the fact that —log({1—x) < 2x for 0 & x & %— , We get

‘ 16C3" piw,
gelwwq} = —log lui = — log ii\?-’ + ‘ll —logvi<2 l“-\',‘—"! ~ log vl Q_‘Tld—-{—ﬁé?ﬁ@ -log Ivi
¢

=C plw,e) — log Ivl






19
letting w" = w,, we obtain since log lvi — 0 that ge(w,w]) <C plw,e}, wEC)~-{AU A (w1)}.
Similarly from (5.10) and (5.12}, we get ge(W,O) < Cplw,el forw&Dile)—-{A U A(w-l)}. We

conclude that (5.3) is true.

Next we use (5.3} to prove (5.2). We firstclaim for given €, e €Yy, that
(5.13)  ggolwq,0) — g (wq,0) =Jq +dp+ Jg+ ole)
as ¢— Owhere

=] 0d,
127 gapey ¢ on 1

: 0
=_1 9e
Jy=—-— Galswa) —€ (3,0} Idsl,
2 .90 1
ar ,u1ﬂD(0) on
Jo=—+ 1 Ig (sw1)a—g.(50)——g(30)2—}59-{sw1)] \dsl.
0 13 o f 0 r ’ *
2T #TQD(O) on an
To verify this claim we consider two cases. First suppose that § is as in variation i1, 1n this case we let
D*(e)CD(e)ND(0), be the domain whose boundary is the union of the arcs: 3D(e}NaD(0), pND{e}, 1 ND(O},
and the arc of 3Ky with endpoints Aq,A, which is contained in V. Here Aq is as in variation {il. Let v denote

the above arc of 8Ky. We observe that D*(e) is a starlike. This observation is verified using {2.3b} and Lemma 1.
From the above observation and Lemma 2, it now follows that D*{e) can be approximated by a sequence

of a starlike domains (2{n)7 with the property that
(i} thesets 3N Dle), pp N D{0), and v,

are contained in 38(n),

(i) S2{n) CDXe),
(ili} Each point of 882(n) is within 1/n distance of a point of 9D *{e),

Aiv) 882{n} consists of a finite number of warcs and v.

(o -
Since D¥{e)CDND{e) we clearly may apply Green's second identity in & (n)~{w:lw-wql<n}, n small, to the
functions: gglw,wql, g (w,0)—g. (w,0), w & Dle) N D {see Nehari {13, p.9] for this identity).

Doing this, letting 1 - 0, using {iil} and (5.3}, we get

6oiw1 00— (w00 = dy +dp+ I3+ 3+ 0L,
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T g = 1 fv ge(s,0)-g, s, 0)]2 {s,wq) Ids] f o {swq ) [Qe(s 0)-g,{s,00] Idsl.

We note that each point of v is O{e) distance from A. Furthermore the arc length of v is O{e) as e =+ Q.
Hence from (5.3}, J4 = O(ez) as € > 0. Using this fact and letting n = ¢ in the above equality, we get
(5.13) when § is as in variation 111, The proof of {5.13) when § is as in variation |1 is similar. We omit

- the details.

To continue the proof of (5.2} we show

G140 dim L = g Boggg B, DEI=RAL
e=0 2m g an on Ip*{s)l
dy g gO |¢>{s) HE)!

(5.15) gj% Ak {1 9(s.0) =2 (s,wy) paRY Ildsl

I3
(5.16) lim 5 - Q.
-0
To prove (5.14} let V 2 8 be the domain of definition of p, as defined at the beginning of §4.
Let £.,e€Y4-{0}, and &, denote the line segments which are images of B4=Bqleland 8
under p respectively. We also put HA{$) = 9 (wOlwhenplw)=¢, w €V ND(e), €€ Y.
Then H, isharmonic in p(V N D{e}), vanishes on R0 and from (5.3}, (5.1}, it follows that

(.17)  H&) < C, ¢ € plV N [Dle)-all,

(5.18)  im H (§) =H (), ¢ € plVND{0)].

e~>0
Now suppose that s is a fixed number in §—{A,B} and t = p{s}, Then if €5 >0 issmall enough,
we have s€D{e) NS foreeYMN0 62] 0<ey<e1, as follows from the definition of D{e). Let R = R{e)
denote the point of intersection of i1 and the « arccontaining § in V (Either R=AorR = Pq).
Then we may write t = p(R) +',x950’ where X = x{e} > 0 and ell denotés the direction of ;. Since
the angle between £. and the line containing L4 at p(R) is ¢, either the point u{c) = p{R) + xell0te)
or the point t{e) = p{R) + xeiw‘”e), isin &, for €y > 0 small, eEYTH[O,ez]. We first assume.
that tle) isin &{e}. Thenif €o is small enough there exists p > 0.and a semi- . .
circular disk, Q(e), of radius p, center t(c), and whose diameter is a line segment of £, which is
contained in p[V N D(&)] for € € Y1N[0,e0]. Since H, vanishes on the diameter of Q(e}, it foltows

from the reflection principle, that
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519 He(g)=1m (£ aplele™ ~0) (¢ -1(e)] 7,

¢ € Qe), where ag{c) is real, n=1,2,. .., and
(5200 laglell < C e, n=1,2,. ..,

(6.21)  agled =2 [T K [Herpe®] sin (p-0+eldg.
e -

From_(5.19) and (5.20} it follows with ¢ =1{0) =1 that

iH, (t1—ayle Jim(ell€ 9 t—t(e )]

(5.22) | :

< C e,

Furthermore from {5.18}, {5.21}, the bounded convergence theorem and the fact that ieliﬁo Rie) = A

we deduce, el_l_gb aqle) =24{0). Hence, -

oH
. = U = —t] = - ._-—0 —
{6.23} ielﬂ‘\o ge(s.0)e E—TO He(ti/e = aq{0) Ip{A)—tl v Ip{A)—tl.

oH
Here 5;-9- denotes the outer normal derivative of Hoon o [fule)isinl, for ¢q smali, then
aH
the above equality also holds, as is easily seen, We observe that, %ﬁ- (s,0) = -aFQ— {t) Ip’{sit. Using.

this observation, {5.3}, {5.23), and the bounded convergence theorem we deduce that (5.14) is true.

The proof of (5.15) is similar to the proof of (5.14). Let N be the domain of definition of ¢,

as defined at the beginning of §4. Letvg . andy,, denote the line segments which

are images of ¢ M D(0), and u-{E,F} under ¢ respectively. We also put V()= go(w,WT),

HA8) =ge(w,0) when { = ¢{w), w € NNDle},and € € Y. . Sincethe angle between v
and vy, at ¢(E) is 8, we may assume that |

vs = WHE)+ xol00) 0. < x <y, |

where e isthe QErection of yoand § = d(e), €& Y 1. From the definition of D{¢) and the fact that
lim_ &{e) = 0, we see that lim_xq{8) = x-l(O).
50

[t d
Using our new notation and changing variables in the integral defining Jo we find that

x1(8) el 0—8)
soa 2 o VO ¥ bEmeTT oM,

J2 O —8)1 wy:
5 s Y [¢(E}+xe ] dx.
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Here —% denotes the outer normal derivative of H, to yg . From (5.3) we note that
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n .
5710 [¢(E)+xe'(0=8)] is bounded for §= &(e), e €Y —{0}, and 0 < x < x;(8). Moreover,

' v 05) N |
(6.25) fim BT OV e eei®) -
80 6 an

when ¢(E) + xell @ Yo Also, asin (5,23} we find that

aH
(5.26)  lim € (p(E)ixa0€) = 2o (siEraneid],
50 00 an

when (,'rS(E)+><ei‘9 € yg. Using {5.24)—(5.26}, (5.3}, the bounded convergence theorem, and changing

back to our original variables, we conclude that (5.15) is true.

The proof of {5.16} is essentially the same as the proof of {5.15})., We omit the details. Hence

{6.14}~(5.16) are true.

Finally we show that

(6.27) lim &le)fe=q
e=0

where g is as in {5.2). (5.2} is then an obvious consequence of (5.13)—(5.16) and (5. 27) To prove

(5.27) we putwyq =0 in (5.13). We obtain from (4.9) that .

(5.28) -l 7 ge(s,O)'gg—Q—- (s,0) Idsl = - f dols, O) B¢ {s,0} Ids! + o(e
2 ﬁmD(E) on 27 #10{)(0)

From (6.14)—(5.15} with w1 = 0, we see that

)
-/ g.(s,0) o. {s,0) ldsl = {1+ 0(1}]e Ig,
pnDle) 9N
- gos,0) 205041 = [1+o(1)] & 1q.
u3ND(0) on

Using these equalities and {5.28), we find that (5.27) is true.

as e~ 0,
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We have now shown that (5.2) holds with a ofe} term that depends on wq. To complete the

proof of {5.2), we show this term does not depend on w1 when w lies in a compact subset, X, of D(0).

Ciearly, it suffices to prove the above for given wy € D(0} and X = {w2 Iwo—wgl < —} r small.

Moreover, since a pointwise limit of uniformly bounded harmonic functions is umform it suffices to

show that e 1{g-o(w1,0)-ge(w1,0)] is uniformly bounded for ¢ € Y1—{0} and wjy € fwo: lw2~w01 <

From (5.13), its subsequent proof, and (5.27), we see that this statement will be true if we can show

th tant in {5.3) d td e Dlweo—wal < L},
e constant in {5.3) does no epend on w when w4 {W2 Wo—wq 2}

. To argue the last statement we first assert that [gelwwp)] ~1 g.{w,wq) is uniformly bounded

whenever W1 = {w2 : iw2——w01 < ;—} , W E {w2 : Iwz—woi =r},and e € Y. Indeed, since

D(e} = D{0} in the sense of kernel convergence, we have k- Ko uniformly on
{w2 lw2—wol r}. Using this fact and {5.4), it follows that our assertion is true. If c denotes

the uniform bound in our assertion, then from the maximum principle for harmonic functions
we have, g.{w, wil < ¢ ge(w wo) when w & Die) — {w2 Iw2-w0i <r},

wq € {w2 s lwo—wil < 5} and ¢ € Y1. Using (5.3} with wq = wp, we conclude that
gelwwq) < ¢ ge(w,we) < cC plw, e},

when w, wy, and ¢ are in the above sets. Hence the constant in {5.3) does not depend on

Wy € {wy & lwg—wyl < 5—}. This completes the proof of (5.2).

r

2

3.
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G. The Julia variational formula. [n this section we show how the Julia variational formula for
the mapping functions 1. , corresponding to D(¢}, can be derived from the Hadamard variational
formula for g, [see (5.2)]. We then show in a general way how the Julia variational formula can

be used 1o solve some extremal problems. We use the same notation as in §5.

First note that I"(0) is a Jordan curve. Hence from the strong form of the Riemann mapping
theorem {see Goluzin [4, Thm. 4, p.44]), f is a homeomorphism of KWK onto D(O)} U T{0),
Consequently there existarcs A, 7 , of 8K, disjoint, except possibly for endpoints, such that
T\ = 4, and fo('r)'f- 8. Also from the reflection principle we see that fj can be extended
analyticaiiy-to a larger domain containing all of A U 7, except possibly the endpoints of these arcs.
We denote this extension again by 5.

Puts=f,{{}, £ € N U r, andchoosez €K such that wy = f,(z). Furthermore, let
hit} = —q lg(s)—g{E)/Ig'(s), whens =1 () € u, and h({) = Ip(s)—p(AN/Ip'{s)] whens=1f (1€ 0.
Here q is as in {5.2). Using (5.4}, changing variables in {5.2), and arguing as in Julia [7], we get

—t g+ <20l ¢z i)
(6.1)  fela) =fola) + — {UT(I—-z)lf‘(r)l ldg1 + ole)

as e~ 0. Nowlet dA{¢{) =g( g)fllcfg;l , when ¢ € A U7, Then from (6.1) we obtain
m

log(f (z)/z] =loglfylz)fz] +e [ Ejg,(f,)_ (££2) gA (£) + ole)
ANUT fo(Z) [

as e > 0. If ¢ is a given nonconstant entire function, then

f.(z) f.(2) f {z}. zf {z)
< l LI = DI L0 (I)' l &) (9] {‘+Z . ,
[log -5—1 [log -] +e ?\{JT‘ [log -4 ]fo_(Z) (g-z)rd’\m + ofe)

ase— 0. Hence

(G.2) Re b llog r“},—)J )~ Re {dlioy f"if!] beo o olA) +ole)

AUT

where,

folz). 2f,{z) (L2

{6.3) olf) = Re (¢’ [log 4—] @ -z

)}, § € 0K,
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Next let o, d, and M be fixed positive numbers satisfying 0<< o <ee, 05 d << 1,and 1 < M < en,
L.et C denote a giveﬁ compact subclass of S{o,d,M). Let ¢ be a given nonconstant entire function.

Consider the following extremal problem:

Problem 1. Find max Re {@{log f—él)] } for given z € K—{0}.
' feC

Assume that f is inCfor €e€Yy. Thgn we shall outline the method in which {6.2) can be used to
obtain information about an extremal function which solves Problem 1 in C. Fi‘rst'observe that if &’ [Iog%(f—)-] #
then ¢ defined by (6.3} is the real part of an analytic function which maps 3K onto a circle, Hence
3K can be divided into two arcs, disjoint except for endpoints, such that ¢ is increasing on one arc,
and decreasing on the other. It follows from this monotonic property of ¢ that if we are given any
three arcs of oK (_disjoint except possibly for endpoints}, then we can choose two of the arcs, say A

and 7, such that

{6.4) min. o{t) = maxa{{).
{er FEN
. . . . , f {z)
If(6.4) holds, we claim that either fo is not an extremal function for Problem 1 or @'[iog ‘.}_ ] =0,

To verify this ¢laim observe that dA({) <0, ¢ € A, and dA({} >0, § € 7, except possibly at
endpoints of these arcs. Also, [ dA(}) =0. Using these facts and (6.4), we obtain from (6.2}

that either AT :
(6.5) Re {P[log 1c5’%(—%—.)-}} > Re{P[log f—%@] 1

for € >0 small or

(6.6)  o'lieg 9% =0,

if {8.5) occurs clearly f is not an extremal function for Problem 1. Hence our claim is true.

§7. Preliminary lemmas. Let o, d, and M be fixed positive numbers satisfying 0 < a <ee,
1< M <o, and 0 < d< 1. Then in this section we first consider Probiem 1 in some subclasses
of S{a,d,M). Using this information, we then consider Problem 1 in S{a,d,M). Our goal is to show

that a rotation of F defined by {i}—(iv} of §1 solves Problem 1in S{a,d,M) {Lemma 8). We use
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Lemma 4 and a Theorem of Cératheodory imply that if f(K) = £, fn(K) = Qn, where
f, f, € Sla,d,M), then '

(7.2) lim £, =1

n—reo
' uniformly on compact subsets of K.
For a given positive integer n, let C, denote the class of functions f & S{a,d,M) with f(K) € a

As in the proof of Lemma 1, we see that if f & Cn, then f may be written in the form

0,
aRe{1+M}+ (1—a) RE {%ii?—l}- 2 a Re{“”o }

{z) k=1
m
where m<in, & >0{1<k<mj), and Z a, =1. From this formula it is easily seen that Cp, is compact. Hence if
k=1

o ¥ {¢}, then there exists an extremal function Fn for Problem 1T with C = C . Choose a subsequence
(n )1 of (n)T° such that i H = Fn , JF1.2,..., then lim H‘1 = H ES{Q d,M} uniformiy on compact
subsets of K. Then from (7. 2) we see that H is an exnj’emal function for Problem 1 with C = S{«,d,M).
We note for given f €S8{a,d,M) and t € K that the function f{tz)/t, z € K, is also in S{a,d,M).

It follows from this fact and a result of Kirwan (9] that

(7.3) ' [log Hizly # 0,

+

Here @ and z are as in Problem 1, and H = lim Hj is as above. Hence we may choose ng, large enough
j—roo
such that .

(7.4} P'[log(H;(2)/z)] # 0, > n

We use (7.4) to obtain a partial description of QI = Hj(K).i 2 ng. Indeed, we have

Lemmab. Let HJ- and S?,j = Hl{K) be as above for j = n . Then all but at most two of the « sides of

8&'21 are either o chords of BKM or are tangent to DKd.

Proof: Assume for somej = ng that Lemma5 s faise. Put D(0Q) = QI , Do) = aszj, and f = HE'
Then ['{0) has at least three « sides which are not « chords of dKjpy and which are not tangent to aK 4.
The preimage of these sides consists of three arcs of 0K, disjoint except bossibly far endpoints. As in

§6 we choose two of these arcs, A and 7 such that (6.4) holds. Let foh)=u, f(r)=p. Then ucan
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the method of §6. To begin, let (L. denote the class of « starlike domains £ with £ in @ if and only
if fiK) = 82 forsome f & S{c,d,M). Let @"n denote the subclass of (& consisting of ali domains £
whose boundary is the union of a finite number of aarcs with at most n nondegenerate vertices. By

a vertex we mean of course the intersection point of two « arcs. The vertex is nondegenerate if the
smallest angie 6 between the two a arcs at this vertex satisfies 0 < 0 < #. If §is an « arc connecting
- two nondegenerate vertices of £2, then we shall call § an wside of §2. If the vertices of an « side

lie on 0Kp,, then we shall call 8 an o chord of Ky« The following lemma shows that v,

) T<n=oe
isdense in (_Q_, h

Lemmad, If € (), then there exists a sequence of domains {©,} with @, € (ﬂ_n such that

§2, = & inthe sense of kernel convergence.

Proof: It obviously suffices to show that for each 7> 0 there exists an integer n and Qne @-n
such that 082, is contained in an n neighborhood of 8§2. Let f € S({a,d,M) be such that f(K) = .
For givenr, 0 < r <1, we consider the function fr(z) = {(rz)/r, z€ K. From {1.1) we see that f.is
an « starlike function. Moreover the maximum and minimum modulus principle guarantee the

existence of a dq ahd M] such that

(7.1 d <dg <HJ{2/zl< My <M, zEK,
We put ¥ = fr(ﬂ). Then since f is continuous on K U 3K, we may choose r near enough 1, such
that each point of 382" iscontained in ann/2 neighborhood of 382, From Lemma 2 we see that

{2* may be approximated by an a stariike domain G with the following properties:

{if, GCa*,
(ii) oG C L{dqMq) = {z:dq < lzl < My},
(iii) @G is the union of a finite number of « arcs,
(ivi 8G iscontained in an n/4 neighborhood of 3Q2*,
if o= L < m n_
(vi if p=m.r. G <1, then ) min {IV%/M1 ,.1 +4M}.

From (i}, (iii}, and {v) we see that ;5« G e @n for some n. Also, {iv} and {v) imply that a(%G) is
contained in an 7/2 neighborhood of {4*. Hence if Q,= ;G than 3§12, is contained in an 7

neighborhood 6f §2. This completes the proof of Lemma 4.
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be rotated inward as in variation !, and 8 can be rotated outward as in variation 11(b) in such a way that

we obtain D{c} (see §4) for eEYq. Also if € >0 issmali enough, then D{¢) has the same
number of vertices as D(Q). Hence Die¢) & @‘-nj for e€Yy. It follows that the functions f. ,

corresponding to D{e} are in an. Using this fact, {6.4), {7.4), and arguing as in §6,
-we find that f is not extremal for Problem 1in an. Since f, = Hj, we have reached a contradiction.
We conclude from this contradiction that Lemma 5 is true.
We recall that our goal is to show that a rotation of F defined by (i)—(iv) of §1 soives Problem 1.

We shali need the foliowing lemma.

Lemma 6. Letdq and My be fixed positive numbers satisfying d < dq < M4 <M. Let .Q} be as

in Lemmab for j = n,. Then there exists, independently of j, a maximum number N of « sides of aﬂj

that_intersect the ciosed annulus L{d, M'i)'

Proof: We first consider those a sides of F)Qj (j fixed) that have their endpoints on dKp,. If an o
chord of 0K, intersects L{d,M), this chord subtends a minor ar¢ of BKM of arc length at least t4. 14
may be taken to be the arc length of the minor arc subtended by an a chord of 0K, which is tangent
1o BKMI. Again this statement is proved using (2.3b) and properties of convex domains. Choose an
. integer £q such that %414 > 2aM. Then, independently of |, no more that £, sides of ani which are
o chords of 3Ky, can intersect L{d, Mq).

Suppose next that § isan « side tangent to 8Ky which intersects L(dq, M1). Let P be g point
of §N Lidy, M1) and let P4 be the radial projection of P on 9K 4. Let Pp be the point where § is
tangent to K. Then the length of the minor arc of 6K with endpoints Pq, Py, has length at least to,
where ty depends only on d, d"i' and o, Since Qj is starlike, two arcs of 3K, obtained from two
different « sides tangent to 3Ky in the above way, cannot overlap. Hence if &5 is a positive integer
satisfying f5ty 2 2wd, then aszj has at most 89, « sides intersecting Lids, M1} which are tangent
to 3i4. Using Lemma 5 we conclude that BQJ- hasatmost N= {3 85+ 2 sides which intersect
Lidq, Mqh -

Next we use Lemma 8 to characterize £ = H{K). We shall need some notation. Given 0,

0 < 0 < 27, and = ng, let Wl((]) denate the unique poim of intersection of DS?.J- with the ray
from w = 0 which has direction e'l. The uniqueness of wj(O} is guaranteed by Lemma 2. wi{0) is
defined relative to 92 in a similar way. Forgiven ¢ >0and 0, 0< 8 <2, we claim there exists

a positive integer nq = nqle,0) = no_'suéh that

(7.5} lwi(B)-——w(GH < ¢ for j=nq.
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This claim is a direct consequence of the fact that Qj = §1 as| oo in the sense of kernel convergence.

We use (7.5) and Lemma B to prove

Lemma7. Letdq and M4 be as in Lemma 8. Let £ = HI{K)., Then 982N {w: dq < iwi <My}

consists of a finite number of « ares.

Proof: Suppose x;, 1 < i < N+2,are N+2 points of 282 with 0 Arglx )< Arg(xi X <mex,
1< i< N+l and dy < ixit < My, 1< i< N+2, LetV be asector, whose boundary consists

of two rays drawn from w = 0, which contains each xj, 1< 1 < N+2, inits interior. We may assume
V has angie opening} less than mo, Draw the aarcs f;, 1 < i < N+1, which are contained in V, and
have endpoints x;, Xi;.q. Let g, denote the smallest angle between the tangents of §;and ;.1 at
X1 for 1 < i <N. Then if Lemma 7 is false we clearly can choose x;, 1 = | = N+2, as above,

1

and such that

N

(7.6) 0<¢;<w, 1< i<N

Furthermore, from (7.5) we can choose, for arbitrarily small' ¢ > 0 and ] large enough, N+2 points

of anj, SaY Y 1,Y9r » wYN+2 SO that

lxi—yii < e 1< 1< N+2,

However if ¢ is small enough this inequality and (7.6} imply that aﬂj has N+1, o sides which

intersect L(d-l,i\/l]). We have reached a contradiction to Lemma 6. Hence Lemma 7 is true.

83, Proof of Theorem 1. Finally we prove

Lemma 8. Forsomereal 8, §) = ewF(K}, where F = F(+, a,d,M) is as in {i)—({iv).

Proof: First we extend the definitipn of ari a side. Letsy be an o curve and suppose that § = ~MosL is
a set consisting of more than one point. Then we shall call 8 an « side of 882. From Lemma 2 we
see that B is a closed aarc. Hence if 92 # §, then § has endpoints A, B, with A #B. In this case we
assume, as we may, thatd < Al < 1Bl <M. We assert that '

{a} the left and righthand tangehts to 082 at B do not coincide.

{£1BI < M, then (a} i»s a consequence of Lemma 7. 111Bl =M, then {(a) is easily proved using (2.3b} and
geometric properties of donvex domains. Hence ou r'.ass-ertion is true, : X

Next, we assert that one of (b), (c}, or (d) is valid for A,
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{b) The left and right hand tangents to 082 at A do not coincide and d <1Al,

{c) IAl=dand thereexists aset {Q_ ] of distinct points in i<, N 88 with lim Q. = A,
n’1 d noo N

{d) [Al=d and there exists a set {p n} c1>° of distinct « sides C 982, with endpoints A, B, n=1,2, ..,
for whichd < Al < 1B ! <Mand fim A, = lim B =A. '

nooo 1 oo A
The proof of {b) is the same as the proof of (a). 1fIAl =d, then from Remark 1 we see that 7y is
the unigue « curve tangent to aKd N 9§ at A. Using this fact, Lemma'3, and Lemma 7, it follows
that either {c} or {d) is true.

. We now use {a)—{d} to show that 0£2 contains at most two o sides. Suppose to the contrary
that there are at least three distinct « sides in 382, To obtain a contradiction we consider two
possibilities. First assume that one of the statements (a}, (b}, or (c} is valid for each endpoint of
the « sides. Then the preimage of these sides consists of three arcs, disjoint, except possibly for
endpoints. Asin §6 we can choose two of the arcs N and 7 such that (8.4) holds with f5 = H.

Let Aq be a subarc of A with the property that
() Aq has an endpoint in commaon with X,

(t1) HOA) N 3Ky =" {9} .

Clearly there exists such an arc Ag. We put H\¢) = u, H{r) =f. We also put {2 = D(0) anad f, = H.
Then u satisfies the conditions of variation |, and § satisfies the conditions of either variation 11 or 11
Hence we can perform these variations on D{0} in such a way that we obtain D(e) (see §4) for

¢ €Y4. From the construction of D{e), we have Dle) € Cﬂ_ . Hence if f_ is the function corresponding
to D{e), then f, € Sle,d,M). Using this fact, (6.4}, (7.3), and arguing as in §6, we find that f, = H is
not extremal for Problem 1 in S{o,d,M). We have reached a contradiction. Thus if the above possibility
occurs, then 082 contains at most two « sides.

Next consider the possibility that all of the statements (a}, (b}, and {c} are false for an endpoint of
one of the above « sides. Then from {d) we see that 02 N & :d < Izl < M} contains three other « sides.
Furthermore, either statement {(a} or statement (b} is valid for each endpoint of these o sides. Hence we
may apply the argument of the first case to these « sides. Again we obtain a contradiction. We conclude
" from this contradiction that 9§ contains at most two a sides.

Since £ is « starlike and we have Lemma 7, it follows from the above that 0$2 consists of at most
two « sides, at most two arcs of 8Ky, and possibly one or two points or a proper arc of 9K . Consider
first the case when 9§ contains exactly one « side. Then from the discussion in §3 for d = 8{M,a) we
see that Lemma 8 is true. Second consider the case when 92 contains two a sides. in this case we shall

show that one endpoint of each « side must be on @ Kg- It then follows from Remark 1 that these o sides
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are tangent to 9Ky and there upon from the discussion in §3 that Lernma 8 is true.

The proof is again by contradiction. Assume that 382 contains two « sides with at least one
of the sides having both its endpoints off of 3Ky, Observe from Lemma 1 that the other side then
must also have both its endpoints off of 3Ky, Let £ and £ denote these two o sides, Let
Y4, Yo, C 8K be such that H{y = ¢, K Yol = §p. Put f, = H and suppose that ¢ defined by
{6.3) obtains its minimum at §'O€ oK. We first assume that { is an interior point of either yq or
Yo We may assume that §o Is in the interior of Y ¢ since otherwise we renumber. Then by the
monotonic property of o (see §6), there is a subarc Yo C Y1 poséessing an endpoint in common
with ¢ and satisfying max o(f) < min ¢{f). Chooseasubarc N of Y3 possessinga common

o SN SN U
endpoint with ¢ ¢ and for'which HN) MoKy {¢}. This choice is possible since &4
has both cndpointé off of‘ dK . We note that Aand T = o satisfy (6.4}, Alsoif H{Al = u,
H{r) =g, fg=H, Q= D{0), then u and B satisfy the requirements of variations | and i}

respectively. Using this {act and arguing as previously in - §8, we obtain a contradiction to the fact

that H is extremat for Problem 1in S(d,d,l\fl). Hence {, isnotan interior point of either Y4 or Yo

Now consider the case when § , is not an interior point of either ¢ or Yo. In thiscase g
clearly varies in a strictly monotonic manner on one of the sides, say yq. Let {4, {5, denote the
endpoints of 4. Letthe labelling of these points be such that

L]

{8.]) 0({1) < O(§2) .

Choose a subarc v C 1 with the property that {4 € » and H{v) NoKy= {¢}.
Again we let H =, D(0) = &, and use the notation introduced in 84, Let M beasubarcof
H{v), with H{§ 1) € u, u N 3Ky = {¢}, and such that if § = §q-u,thengq defined as in {5.2)

satisfies

(8.2) g> 1

This choice is possible since from {56.2) and {5.3) we have g —+'o as the arc lengthof u—> 0. Let A=E
denote the common endpointof § and u . Then u satisfies the hypotheses of variation |, but §
does not satisfy the hypotheses of either variation I} or 111. However from the remark after (4.6)

we see that we still can apply variations | and !l to obtain a starlike domain Dfe) for e €Yy

with m.r. D{e) = 1 and 8D{e} C L{d,M). We assert that in fact D{e) is a starlike for e € Yy N [0,62]

when e, >0 issmall enough.
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To prove this assertion we introduce a new domain B(E), € €Yq. We obtain B(e) by
applying variations | and Il to D(0}. More specifically, put 6(&') = Dle, e} (see §4 Tor the definition
of D{e, §)). Then aﬁ(e) contains o arcs ;?, {?, with e the smallest anglé between u, fz\, and g8, é\,
at £ = A. Hence, ﬁ U é\is an o arc. Using this fact and Lemma 1, we find 'thatﬁ(e) is o starlike.
We claim that {5.3) is valid, where now g {+,w4} is Green's function for 6(6) with pole at
wy € 6(6). Indeed, it is easily checked that {5.3) holds under the weaker assumption,

lim m.r, ﬁ(e) = 1. Using (5.3) we deduce that (5.13}—(5.16) still hold for g, when & = e. [t follows
>0
from these equalities with wq = 0, & = ¢, and (8.2} that

A
I
lim 1=mrDle) - L I~1,] = 1 [1-q} < 0.
=0 2m 27
F’\
Hence, m.r. D{e) > 1 for e > 0 and small.
~ ~

Since m.r.lﬁ(e) > 1 for € > 0 and small, we may now apply variation | {with D(e), u, replacing
D(0}, u, in 1} to obtain an « starlike domain B(e) with m.r. D{e} = 1. We note that E‘C aD{e} N oD(e).
Using this fact and the monoticity of the mapping radius, we conclude thatB(e) = D(e). Hence our

assertion is true.

let ACw» and ¥ = Yq~\ bethe preimages of u, B, respectively under fy. We observe
that §q € A. Using this observation, (8.1), and the monoticity of ¢ on \p1 we deduce that (6.4)
holds for A and 7. Using {6.4), {7. 3) and arguing as in  §6, we find that H is not extremal for

Problem 1 in S{a,d,M). We have reached a contradiction. Therefore { must be an interior point
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of either 4y or o, However, we have already shown this case cannot occur. Hence the assumption
‘that £ ¢ does not have an endpoint on 3K is false. We conclude that Lemma 8 is true.
Next we use Lemma 8 to prove Theorem 1. We note that F defined by {i)—{iv) of §1 is circularly

symmetric. Using this fact and Theorem 2 of Jenkins [6] we see that

i01 i0

(8.3 IF{re *)1 > iFlre <), 0 < 0¢< 0p =,

whenever 0 < r < 1. From (8.3} and Theorem 3 of Kapian [8], we deduce that the function

glz) = log Ez@—, z € K, is'univalent and convex in the direction of the imaginary axis. Suppose now
for some T € S{a,d M) that the function h{z} = log ﬂzl} z € K, is not subordinate to glz). Then
for somez, & K—{0} we would have w, = nzg) ¢ g{K}. It would then follow from Runge's

Theorem {see Rudin [14, Thm, 13.9]} that there exists a polynomial P with
(Pt 7 dor weglKy, |,

0
. 1
(i) IPlwgil = 7
We choose 7 such that Re @Y Plwg)} = tP{wgll. Then the function ®{w) = elTP(w) is entire and

from (I}, (ii), we have

£(ol0 ]
max Re{‘l’[logwl}é 1< Re{(i)[log—-(‘_f-—g)]}.
0<H<2m eld Z 4 0

This inequality contradicts Lemma 8. We conclude that Theorem 1 is true, for fixed &, d, and M

satisfying 0 <o <o, 1< M <oo,and 0 < d< 1,

Thecase 0 <a<ew , M=o , 0 < d< 1, canbe handled by treating it as a limiting case as

M — oo of the above cases. We amit the details.

89, Proof of Theorem 2, Let M and & be fixed numbers satisfying 1 < M <o, 0 = d <.

Let $*(dM)beasin §1. GivenfeS*{dM)andr, 0 <r < 1, let fdz} =flrz}/r, 2 € K. From

the maximum principle for harmonic functions and (1.1) we see that f, &€ S{a,d M} for 0< & < «,
provided oy is small enough. Hence from Theorem 1, log ffz(j—)-, z € K, is subordinate, to the
function log[Flz,ed,M)/z], zEK, for 0 < « < &g Using this fact and simple properties of
subordination, it foliows that if F*{-,d M) = gino F{- ,d,d,{\fl} exists, then log fr(z)/z, ZzEK,is

subordinate to log[F*{z,d,M}/z], z € K. Since F(K,r.g,d,M) converges as o —+ 0 in the sense of kernel
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convergence, we see that the above limit exists. Furthermore, dF *{K,d,M) consists of either
(i) Anarcof aKy, passing through —d, with endpoints dew, de"m , 00 <,

{ii) The arc of aKM, passing through M, with endpoints Met? . Me"w,

(iii) The radial line segments connhecting de'? . Mel? , and de10 , Mei0 , respectively,

or

liv) A line segment on the negative real axis with one endpoint—M, and 8Ky.
Since f = 1i_r>n1 f. we conclude that (B} of Theorem 1 is valid.
i

Finaily we show that g{z) = log{F*{z,d,M}/z], z € K, is convex univalent. Since g is the limit
of univaien_t functions, it i§ ciearly univalent. Letzq,zg, be fixed points in K— {0} with
z1/izﬁi = elei, 22/1221 = e192, and 71 = iZqlsSrg = izpl.  Then forgivent, 0 <t <1, and
r=rq/rg < 1,the function
hiz) =2 ia=*(ezi92z.d.z\fn t F*(re_io'izldLMl 1"t’
. 6102Z i0q

re z

z € K, is In S$*(d,M}. The above fact follows from a property of starlike functions stated in §1,

and the maximum principie for harmonic functions. Since log[h(z)/z] , z € K, is subordinate to g,
we see that log[h{rgl/rp] =1 g('zz) + {1—t)g{z4) is in g{K}. Henceg is convex univalent. The proof
of Theorem 2 is now complete for 1 < M <eeand 0 < d <1. The case M=00,0<d<T1,canbe

handled by treating it as a iimiting case as M - o0 of the above cases. We omit the details.






u—y

N oo W

£

10.

11.
i2.

3.
14,
15,
16.

35

References

R, Barnard, Extremal problems for univaient functions whose range contain a fixed disk, thesis,
University of Maryland, 1971. _ -

R. Barnard, Extremal problems for univalent functions whose range contain a fixed disk, to appear.
S. Bergman, The kernel functien and conformal mapping, A.M.S. Mathematical surveys, V, 1870,
G. Goluzin, Geometric theory of functions of a complex variable, Transl, of Math. Mon. {AMS), 1860.
W, Hayman, Multivalent functions, Cambridge University press, 1967,

J. Jenkins, On circularly symmetric functions, Proc. Amer. Math. Soc. 9, 1968, 82-87.

G. Julia, Sur une dquation aux dérivées fonctionelles lide % la représentation conforme, Ann.

Scient. Ecole Norm. Sup. 39, 1922, 1—28. |

W. Kaplan, Close to convex schlicht functions, Michigan Math, J., 1952, 169—185.

W. Kirwan, A note on extremai problems for certain classes of analytic functions, Proc. Amer. Math.
Soc. 17, 1966, 1028—-1030.

J. Krzyz,Distortion theorefns for bounded convex functions |1, Ann. Univ. Mariae Curie-Sklodowska
Sect. A, 14, 1960, 7—18.

S. Miller, On properties of Bazilevi® functions, thesis, University of Kentucky, 1971,

P. Mocanu, Une propriété de convexité généralisde dans la representation conforme, Mathematica
(Cluj) 1 1(34), 1,'1969, 127-133. |

Z. Nehari, Conformal mapping, McGraw-Hill, 1952.

W. Rudin, Real and complex analysis, McGraw-Hill, 1966.

T; Sufffidge, Some remarks on convex maps of the unit disk, Duke Math. J. 37, 1870, 7756777,

T. Suffridge, A coefficient problem for a class of univalent function, Michigan Math. J. ?6, 1966,

33-42,

University of Kentucky
Lexington, Kentucky 40506






