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Abstract: A function g analytic on the open unit disk & and vanishing only at the origin is said to be gearlike if g
maps @ to a domain whose boundary consists of arcs of circles centered at the origin and segments of rays emanating
from the origin.

The authors discuss each of the possible types of (boundary) corners the image domain of gearlike functions may
have and give formulae for rounding or smoothing each of these possible corners, extending some early work of P.
Henrici. :

The omitted area problem, first posed by Goodman in 1949, is to determine for a normalized univalent analytic
function f on & the maximum area in & which can be omitted from the range of . While Goodman gave some early
bounds for the maximal omitted area, the problem has generally proved to be one of the difficult and long outstanding
problems in geometric function theory. The authors apply the method of rounding corers (o a specifically constructed
gearlike function to produce an approximation for the extremal solution.
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1. Introduction

In this paper we discuss gearlike domains, rounding corners for these domains, and an
application to a long-standing problem (the omitted area problem) in geometric function theory.
Gearlike domains were introduced by Goodman [4] to help in the study of logarithmic derivatives
of potentials represented in the complex plane. Because of the relative obscurity of the journal
containing Goodman’s results on gearlike domains, we repeat here some of the ideas developed
by him. Our results, however, apply to a wider class of problems.

The application we give of rounding corners of gearlike domains to the omitted area problem
was motivated by a characterization given by the first author for an extremal solution of this
problem. We note that the formulae given by Henrici [8] suggest the methods we will use;
however, Henrici’s formulae are not directly applicable to gearlike domains due to the introduc-
tion of the logarithmic derivative and the requirement that the particular boundary behavior be
preserved away from the corners being rounded. Thetfefore, we develop general formulae for
rounding each of the possible types of corners that occur in gearlike domains and apply these to a
specifically constrircted gearlike domain.
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We note that certain applications in electrostatics and hydrodynamics require solution do-
mains with rounded corners, since sharp corners give rise to infinite field strengths and infinite
velocities which physically correspond to electrostatic breakthrough and turbulence, respectively.

Throughout the paper we will let & denote the open unit disk, { z| | z| < 1}. Also, we will let 7
denote the boundary of &, { z| |z| =1}.

If g is analytic on & and piecewise continuous on .7, then we will say that g is halb-schlicht
on 7 if for each point z of continuity of g on .7 there exists a neighborhood N, of z such that g
1s univalent on N, N 2.

2. Representation

A function g analytic on £ and vanishing only at z =0 is said to be gearlike if g is locally
univalent on £, piecewise continuous and halb-schlicht on .77, and maps 2 to a domain whose
boundary consists of arcs of circles centered at the origin and segments of rays emanating from
the origin. If g is, additionally, univalent on 2, then g is said to be univalently gearlike.

A domain ¥ is said to be gearlike if there exists a gearlike function f which maps 2 onto €. If
% is a simply connected domain containing 0 and if the boundary of ¥ consists entirely of arcs
of circles centered at the origin and segments of rays emanating from the origin, then the
Riemann mapping theorem guarantees the existence of a univalent gearhke function g mapping
2 onto . Examples of gearlike domains are noted in Fig. 1.

Let g be gearlike and set G = zg’'/g. The boundary behavior of g imposes the following
(useful) constraints on G (see [4]).

Lemma. (i) Let v be an arc on 7 parametrized by €' which maps under g to a segment of a ray
emanating from 0. Then G is pure imaginary on y. Furthermore, Im G(€'%) >0 on v if and only if
|g(e'?)| is strictly decreasing on y.

(i1) Let A be an arc on I parametrized by ¢ which maps under g to an arc of a circle centered at
0. Then G is real-valued on y. Furthermore, Re G(¢'?)> 0 on A if and only if Arg g(e'®) is strictly
increasing on A.

Proof. It suffices to note that for z = e that

The lemma immediately implies that G maps 2 .to a region bounded by line segments lying on
the real and imaginary axes.

Using the Schwarz reflection principle it can be shown that g, gearlike, can be extended over I
to a function analytic and locally univalent on the entire complex plane except at a finite number
of pomts z;, on . Since g is halb-schlicht on .7, then at the exceptional points z ; one of the
following must occur:

(1) g(z;) will be a “true’ corner point of g(%), i.e., g(z;) will be a boundary point of g(2)
where a radial segment on the boundary joins a circular arc on the boundary.

(1) g(z;) will be the (finite) tip of a radial or circular slit in g(%).

(1) g is infinite at z; and has an algebraic singularity there.
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Fig. 1.

If (i) holds, then the interior angle a at g( z,) must be either 3o or 4w, since g is gearlike. In
either case g must have a local expansion at z, of the form g(z)= glz)+A,(z—2)*"+ ...
and G must have an expansion of the form G(z)= B(z— zj)"‘/“_} A

If (1) holds, then the interior angle at g( z;) is 2m. Thus, g has a local expansion at z; of the
form g(z)=g(z))+A(z w—zj)2 + -+ and G has an expansion of the form G(z)=B,(z - z;)
Finally, if (iii) holds, then G will have a local expansion at z; of the form G(z) = B,(z — zj)_1

+

Using the above observations and employing an argument similar to the one given by
Goodman [4], we establish the following representation theorem for gearlike functions.

Theorem. Let g be gearlike. Then g satisfies

..gg.(.(.)l - f{l(lmgz)‘*’/ﬁ(l —ma)t ~ M)
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where: (A) the §;, w, are all distinct points on I, (B) the a;, B, are all either 1 or1 (0
Lije; =30 1By, and (D) X7 a, Arg {, — X7, B, Arg m, = O (mod w) Conversely, if g satisfies
(1), then g is gearlike.

Proof. Suppose that g is gearlike. Set G = zg’/g. Then there exist distinct {;, m, on 7, powers
a,, B all either 7 or 1 such that

0(:)= %) [T (1 =7,ef™/ T1(1 -5,

satisfies the following properties: (a) Q is analytic on 2U .7 ; (b) Arg Q is piecewise constant on
F; (c) ¢(0)=1. It follows that @ is identically constant and, hence, the representation (1) for g
holds modulo conditions (C) and (D). If, however, {C) were not satisfied, then a straightforward
analysis would show that Arg G was not piecewise constant on 7, contradicting the conclusion
of the lemma. The lemma immediately implies that (D) holds

Conversely, suppose g satisfies (1). Then, it is easily seen [3] that g is analytic and locally
univalent on £, vanishing only at z =0, and piecewise continuous and halb-schlicht on T.
Furthermore, conditions (C) and (D) and the lemma imply that g maps & to a domain bounded
by arcs of circles centered at 0 and segments of rays emanating from 0.

3. Rounding corners

Let g be gearlike and set G = zg’/g. Let z, be a point on .9 which is an exceptional point, as
described above, for the locally univalent, analytic continuation of g across 7. The corner in the
domain g(£) which corresponds to z, must be one of two types: (1) g(z,) is the junction point
of a radial segment and a circular arc bounding g(2); (2) g(z,) is the (finite) tip of a slit in
g(2) or g is infinite at z, and has an algebraic singularity there. For each of the above cases we
shall construct a perturbation for ¢ which will induce a local rounding for the corner at g(z,)
and which will not alter the radial and circular boundary behavior of g elsewhere. For
convenience in the discussion we will write z, = ei®%.

3.1. Junction of a radial segment and a circular arc

Since, locally, g maps .7 on one side of z, to a radial line segment and the other side of z, to
an arc of a circle centered at 0, the interior angle a for g(2) at g(z,) must be either 3o or 1m.
Also, locally, G must map .7 on one side of z; to a segment on the imaginary axis and on the
other side of z, to a segment on the real axis.

Case 1. a = 3. Since a >, g'(z) = 0 as z — z,; thus, locally at z, we can write

2g'(z)/8(z) = G(z) = H(z)yz —z, ‘ (2)
where H is analytic and non-vanishing at z,. To round the corner at g(z,) we perturb (2) by the
factor ' :

e——irz _ eirzo 12
. Y

B o 1/2
el.Yzwe lSZO
z—2z,

Z—Zy-

a(
T1(20a2)= Pt s

2

]:/2

[az + 2ab cos( ) + b?
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where a, b, r, s are all positive parameters. (Each square root is defined using the principal
branch of the logarithm.) Then, if g, and G, are defined by

Zg*(z)/g*( ) G Z)V ZOT(ZCH 3
and if r, 5 are chosen sufficiently small so that on the set
C(8y, r, s)= {6, — 25 < 8 < 6, + 27} ‘ (3)

g’ vanishes only at z,, we claim that g, has no corner on C(#6,, r, 5), .., g4 does not vanish on
C(8,, r, s), and that g and g, have the same local radial or circular boundary behavior
everywhere on I\C(8,, r, 5).

Indeed, we note that yz — z, Ti(z,, z) has a removable smgulanty at z, and is non-vanishing

on .7, Furthermore, for z = ¢!’
sin 3(8—6,—2r) """ sin 3(8 —6,+2s5) |
TI(ZO ’ Z) =14 . + b S
sin 3(8 — 6,) sin {0 — @)
‘ 172y 71
x{{az-%fzabcos(r;s)%-bz] }
Thus, for z € I\C(b,, r, 5), Ti(z,, z) is real-valued, in fact positive. Hence, on I\C(6,, r, s)
G and G, are locally either both pure imaginary or both real, which implies the claim.
Case 2. « = +m, Since a <, {g'(z)| = oo as-z — z,. Thus, locally at z, we can write

28'(2)/8(2) = G(z) = H(z)/{z - 2, (4)

where H is analytic and non-vanishing at z,. To round the corner at g(zo) we perturb (4) by-the
factor ,

Ty(zg, 2)=1/Ti(z, 2).

Then, a similar analysis (to the case « = 2o} will show that g, defined by

zg4(2)/84(2) = (H(z)/vz _zo)Tz(zm z)

does not have a corner on C(4,, r, 5) and that g and g, have the same local boundary behavior

on I\C(8,, r, 5)..
3.2. Tip (finite) of a slit or infinite algebraic singularity

We first consider the case where g(z,) is the finite tip of either a radial or circular slit in g(2).
Clearly, the interior angle « for g(2) at g(z,) is 2m. If the slit is radial, then G, locally at z,,
must map 7 onto segments on the imaginary axis and must change sign from one side of z, to
the other, Similarly, if the slit is circular, then locally (at z,) G maps 7 to segments on the real
axis and changes sign from one side of z, to the other. In either case, since a > m, g'(z) — 0 as
z-»z, and G(z)— 0 as z - z,. Thus, we have

28'(2)/8(2) = G(2) = H(z)(:z - ) . (5)

where H is analytic and non-vanishing at z,. To open up the slit ending at g(z;) and round the
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tip we perturb (5) by the factor

e-—irz _ eirzo ei.s‘z _ e—iszo 1/2
z— 1z, z—z,
‘ r—s 172
[a2 +2ab cos( 5 ) + bz]

where a, b, r, s are all positive parameters. (The square root is defined using the principal
branch of the logarithm.) Then, if g, and G, are defined by

28%(2)/8x(2) = Gulz) = H(z)(z = 20) T1(2g, )

and if r, s are chosen sufficiently small so that g’ vanishes on C(#,, r, s) (given in (3)} only at
z,, we claim that g, has no corner on C(#d,, r, s) and that g and g, have the same local radial
or circular boundary behavior everywhere on 9\ C(§,, r, s).

Clearly, (z — z,)T3(z,, z) has a removable singularity at z,. Furthermore, for z = ¢'?

+b[( sin (¢ — 6,— 2r) )(Sin 10 —8,+ 25) :|1/2

sin 2(6 — 6,) sin 1(8 — 8,)
Thus, for z€eI\C(8,, r, s) T3(z,, z) is real-valued, in fact, positive. From here the claim
follows as before.
"The final case to be considered 1s if g is infinite at z, and has an algebraic singularity there. In
this case we can write, as noted previously,

z8'(2)/8(z) = G(z) = H(z)/(z — z), : ' (6)

where H is analytic and non-vanishing at z,. We can perturb (6) so as to eliminate the singularity
of g at z, and retain outside of aset C (6,, r, 5) the local boundary behavior of g by using the
factor

a—i—b[

T3(20= 3)2

T3(20, Z) =

12

[a2+2ab cos(rgs)-i-bz

Tc;(zm z)=1/Ty(z, 2).
If we define g* by

284(2)/g4(2) = (H(z2) /(2= 2,)) Ty( o, 2),

then g* will have the required properties.

4. Omitted area problem

In this section we give an application of our work to the omitted area problem. Let & be the
class of univalent, analytic functions f on 2 normalized by f(z)=z+ a,z*+ --- . The omitted
area problem, originally posed by Goodman {5], is to determine the maximum area within the
unit disk which can be omitted from the range of a function in &. Formally, if f€% and 4; is
the area of f(Z)NP (7 — A, is the omitted area), then the problem posed by Goodman and
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N

7

reposed by Brannen as Problem 6.35 of [1] is to find

A* = fA T 7
jaiAr (7)

NN

Fig. 2.

An argument can be given, employing the semi-continuity of area as a functional, to show that an
extremal function for the problem exists and, hence, the inf in (7) can be replaced by min.

Goodman showed that 0.57 < A* < 0.7728w. The upper bound which he obtained was gener-
ated by a domain of the type in Fig. 2. Later, Goodman and Reich [6] gave an improved lower
bound of 0.62« for A*,

The first author [2] has shown, using variational techniques and subordination theory, that (up
to rotation) the extremal function f for the omitted area problem must satisfy the following
conditions (with an assumption of piecewise continuity of /" on J):

(1) f(£2) is circular symmetric, see [7} (w.r.t. the p051t1ve real axis);

(il) There exist 0 < @, < 8, < = such that - -

(a) f maps the boundary arc {e’g |0 <@ <#6,} onto the radial half-line (— oo, — 1),

(b) f maps the boundary arc {¢? |8, < < 0 } onto a circular subarc of 7 starting at — 1;

(¢) f maps the boundary arc {¢’}8, < @ <7} onto a curve y which joints 7 to the point
f(—1) on the interval (—1, 0) and which has the property that the modulus of the
normal to y is constant, except possibly on subarcs of vy lying on (—1, 0).

The description in (i)—(ii) of the boundary behavior of the extremal function for the omitted
area problem suggests a motivation for con51der1ng symmetric gearlike domams @ of the type
given in Fig. 3.
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Let g be the associated gearlike function which maps £ to G. Since the mapping radius of g,
i.e., the modulus of g’(0), varies continuously, in fact, monotonically, with the argument of the
side B and with the modulus of point A, then for each side B with the argument between 0 and
w an inner modulus point 4 can be chosen so that g’(0) =1 or, alternatively, for each point A4
with modulus between § and 1 a side B can be chosen so that g’(0) = 1. Suppose that 4 and B
are chosen so that g’(0) = 1. Then g satisfies (i) and parts (a)—(b) of (ii). However, because of the
corners in % at w, and w,, g cannot satisfy part (c) of (ii) and, hence, g can not be the extremal
function for the omitted area problem. Heuristically, one expects that if one could eliminate the
corners in ¢ at w, and w, (and symmetrically at w, and Ww,}, one could produce (after
renormalization) a function with increased omitted area in & and thus move from g towards the
extremal function for the problem.

It is easily seen that g (for # in Fig. 2) has a representation of the form

2g'(z) __[Pz(Z)Ps(ZJ}lfz
polz)p(2)

(8)

g(z)

where p(z)=1-—2(cos )z+:z% j=0,1, 2, 3 with 0=8,<8, <8,<8,<m Let g be the
solution of (8) which satisfies g’(0)= 1. Since the modulus of the outer arc C and the argument
of the infinite ray D vary continuously with the parameters in (8), then in order to satisfy the
conditions (a)-(b) of (it) two of the parameters in (8) must be constrained by the implicit
equations modulus(arc C'y=1 and argument(ray D) = . Thus, with the constraints, (8) describes
a one-parameter family of gearlike functions mapping to domains % of the type shown in Fig. 3.
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Fig. 4.

If, specifically, @, is set at 0.314159 and &, and @, are subjected to the constraints of parts (a)—(b)
in (ii), then the constructed g maps & to a gearlike domain & (of the type in Fig. 3) with inner
modulus at 4 of 0.68057, boundary argument at B of 1.8237 and covered area A, = 0.7748m.

Let z; be the preimages under g of w;, j=2, 3. If we perturb the corners at w, and w, (and
symmetrically at W, and w;) to induce rounding locally, then we introduce 8 parameters into (8),
4 for each corner. The equation for the perturbed g, takes the form

zgt(z) _ zg'(2) = Tz 3
22(2) = 2(2) Ti(z,. 2)T(2;, 2) (25, 2)T1(25, 2). (%)

Again, the modulus of the outer arc and the argument of the infinite ray vary continuously as
functions of the 11 parameters in (9). An initial choice of parameters 8, = 0.314 (8, and &,
constrained so that conditions (a}—(b) of (i) are satisfied), , =01, 5,=02, a,=0.5, ,=1.0,
ry =02, 5,=03, a;=1.0 and b, =1.0 produces a simple perturbation g, of g for which the
covered area decreases to 4, = 0.76906m. (See Fig. 4,'showing the portion of the boundary in the
upper half plane.) )

Using a grid search over the nine free parameters in (9) to maximize the omitted area, we
obtained a best area function g, with 4, = 0.759995n and parameters 8, = 0.305034, r, = 0.0352,
s, =0.0316, a,=13.1705, b,=0.0005, r,=0.3284, 5,=03278, a,= 0 9025, by=1.9498. See
Fig. 5, depicting a portion of the domain arising from this last choice of parameters. We note the
unexpected result of the geometrical shift from Fig. 4 to a less visibly rounded corner for the
domain giving the best obtained bound. However, it does approach the domain used by
Goodman (see Fig. 2), which may explain the proximity of his bound to ours. Our work suggests
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-1

Fig. 5.

that the actual value of 4* is approximated to within 0.01w by the upper bound obtained here in
contrast to the imprecise lower bound given in [6].
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