On quasi-starlike functions

by R. W. BARNARD (Lubbock, Texas)

Abstract. Let S^* be the usual class of normalized starlike functions F(z) on the unit disk $U=\{z\colon |z|<1\}$. If g(z) is regular in U and satisfies the condition MF[g(z)]=F(z), $z\in U$, for some $F\in S^*$ and some positive number M>1, then g is said to be in G^M . In Ann. Polon. Math. 20 (1968), p. 280–282 and ibidem 26 (1972), p. 175–197, I. Dziubiński defined the class G^M and called g in G^M a quasi-starlike function. He raised the question of inclusion relations between S^* and G^M and asked if every bounded starlike function is quasi-starlike. We answer the question in the negative by exhibiting a bounded starlike function that is not quasi-starlike. We also show that if F is either a strongly starlike function of order 1/2 as defined by Brannan and Kirwan in J. London Math. Soc. (2) 1 (1969), p. 431–443, or if F is a circularly symmetric function, then g defined by MF[g(z)] = F(z) is starlike. We also show that the 1/2 is best possible in the sense that for every ε , $0 < \varepsilon < 1/2$, there exists a strongly starlike function f of order $\varepsilon + 1/2$ such that the g defined by Mf[g(z)] = f(z) is not starlike.

1. Introduction. Let S denote the class of regular univalent functions $f(z) = z + a_2 z^2 + \ldots$ in the unit disk U. Let S^* denote the subclass of S of functions f such that f(U) is starlike with respect to the origin. We use starlike to mean starlike with respect to the origin. In [3] and [4] I. Dziubiński introduced the class of functions \tilde{S}_M^* that he called *quasi-starlike*. He defined for M > 1,

$$\tilde{S}_{M}^{*} = \{g \colon Mf[g(z)] = f(z), f \in S^{*}, z \in U\},$$

where g is said to be generated by f. Then $Mg(z) = z + \ldots$ is a normalized quasi-starlike function and is in S. In [4] Dziubiński posed the problem as to whether every starlike function bounded in U is a normalized quasi-starlike function. He also discussed the difficulty in obtaining conditions for a quasi-starlike function to be starlike. He stated that the difficulty arises because a quasi-starlike function can be easily constructed from any given starlike function.

In this note we give an example of a bounded starlike function that is not a normalized quasi-starlike function and give some sufficient conditions for a normalized quasi-starlike function to be starlike.

2. An example. Let F be the bounded starlike function such that F(U) is a disk minus two radial slits. The disk is centered at the origin.

and of radius M, while the slits are non-vertical, non-horizontal and symmetric about the real axis. We will show that F can not be a normal ized quasi-starlike function. Assume to the contrary. Then there exists an f in S^* and an M > 1 such that $F(z) = Mf^{-1}[f(z)/M]$. For any set X let $f(X) = \{f(x) \colon x \in X\}$. We first show that f(U) must be a slit domain Let g(z) = F(z)/M with F as defined above. Since $f \in S^*$, f[g(U)] = f(U)/M is a starlike domain and $f[g(U)] = f(U) - f(l_1) \cup f(l_2)$, where M_1 and M_2 are the symmetric, radial, linear slits in F(U). Since f[g(U)] is starlike, $f(l_1)$ and $f(l_2)$ must be radial slits. It now follows easily from the equation

$$f(\mathit{U}) - f(\mathit{l}_1) \cup f(\mathit{l}_2) \, = \frac{f(\mathit{U})}{\mathit{M}}$$

that f(U) is the plane minus two radial slits.

From this geometric description, f must assume the following form:

(2)
$$f(z) = \frac{z}{(1 - \sigma_1 z)^{\alpha} (1 - \sigma_2 z)^{2-\alpha}}$$

for some α , $0 < \alpha < 2$, and $|\sigma_k| = 1$, k = 1, 2. Dziubiński showed in [4], Theorem 3, that the only time a function of the form (2) generates a quasistarlike function that is starlike is when $\alpha = 1$ and $\sigma_k = \exp i(-1)^{k-1}\theta$, k = 1, 2, for any $\theta \in (0, \pi)$. This would imply the two radial slits in f(U) are opposing slits (i.e., their arguments differ by π). But this would force the slits in F(U) to be opposing slits also. This contradicts the definition of F. Therefore F is a bounded starlike function that is not a normalized quasi-starlike function.

3. Conditions for starlikeness. To establish these conditions we need the definitions of two subclasses of S. Jenkins stated in [6] that a domain D is circularly symmetric with respect to the positive reals if every circle centred at the origin intersects D in at most one arc γ such that γ is symmetric with respect to the positive reals. We say a function f is in Y if f is in S and f(U) is circularly symmetric with respect to the positive reals. We will suppress the term "with respect to the positive reals". Also, in [1], Brannan and Kirwan defined the class of strongly starlike functions $S^*(a)$, where, for given a, $0 \leqslant a \leqslant 1$, $f \in S^*(a)$, if and only if

$$\left|\arg\frac{zf'(z)}{f(z)}\right| \leqslant \frac{\alpha\pi}{2}, \quad z \in U.$$

The main theorem is as follows:

Theorem. Let F be in \tilde{S}_{M}^{*} with F defined by

$$Mf[F(z)] = f(z), \quad z \in U$$

for $f \in S^*$ and M > 1. If either

(a) $f \in Y$, or

(b)
$$f \in S^*$$
 (a), $0 \leqslant \alpha \leqslant 1/2$,

then MF is in S^* . The 1/2 in (b) is sharp.

Remark. The sharpness result of (b) is in the sense that for every $\varepsilon > 0$ there exists a function f_{ε} in $S^*(\varepsilon + 1/2)$ that generates a function in S_M^* that is not starlike for some $M = M(\varepsilon)$.

Proof. Take the logarithmic derivative of (4) with respect to z and then multiply by z to obtain:

$$\frac{\left\{\frac{d}{dF}f[F(z)]\right\}z\frac{d}{dz}F(z)}{f[F(z)]} = \frac{z\frac{d}{dz}f(z)}{f(z)}.$$

Let w = F(z), where |w| < 1 and let $f'(w) = \frac{df(w)}{dw}$. Then using

(4) we have

(5)
$$\frac{zF'(z)}{F(z)} = \frac{f(w)}{wf'(w)} \frac{zf'(z)}{f(z)}.$$

Since MF is starlike if and only if

$$\left| rg rac{z F'(z)}{F(z)}
ight| < rac{\pi}{2}, \quad z \epsilon \ U,$$

we need only show that conditions (a) and (b) separately imply that

(6)
$$\left|\arg\frac{zf'(z)}{f(z)}\frac{f(w)}{wf'(w)}\right| < \frac{\pi}{2}, \quad z \in U.$$

To prove part (a) of the theorem, consider an f in Y. Let $P(\zeta) = \zeta f'(\zeta)/f(\zeta)$ for any $\zeta \in U$. It follows from a result of Jenkins in [6] that if $f \in Y$, then either f is the identity function or

(7)
$$\operatorname{Im}\{z\}\operatorname{Im}\{f(z)\}\geqslant 0\,,$$

$$z\in U\,.$$

$$\operatorname{Im}\{z\}\operatorname{Im}\{P(z)\}\geqslant 0\,,$$

The case when f is the identity follows immediately, so assume f is not the identity. Consider the two cases, $\operatorname{Im}\{z\} \geqslant 0$ and $\operatorname{Im}\{z\} \leqslant 0$. When $\operatorname{Im}\{z\} \geqslant 0$, since F(z) = w is defined by (4), we have that $\operatorname{Im}\{w\} \geqslant 0$. Hence, since $f \in Y$, property (7) assures that $\operatorname{Im}\{P(z)\} \geqslant 0$ and $\operatorname{Im}\{P(w)\} \geqslant 0$. Thus, since $\operatorname{Re}\{P(z)\}$ and $\operatorname{Re}\{P(w)\}$ are positive from the starlikeness of f, we have $0 \leqslant \operatorname{arg}P(z) < \pi/2$ and $0 \leqslant \operatorname{arg}P(w) < \pi/2$ for $\operatorname{Im}\{z\} \geqslant 0$. Hence $|\operatorname{arg}[P(z)/P(w)]| = |\operatorname{arg}P(z) - \operatorname{arg}P(w)| = |\operatorname{arg}P(z)| - |\operatorname{arg}P(w)| = |\operatorname{arg}P(w)|$. A corresponding argu-

ment will show that if $\text{Im}\{z\} \leq 0$, then $|\text{arg}[P(z)/P(w)]| < \pi/2$. Therefore (6) follows.

For part (b) of the theorem, let $f \in S^*(\alpha)$ for $0 \le \alpha \le 1/2$. Then using (3),

$$\left|\arg\frac{zf'(z)}{f(z)}\cdot\frac{f(w)}{wf'(w)}\right|\leqslant \left|\arg\frac{zf'(z)}{f(z)}\right|+\left|\arg\frac{wf'(w)}{f(w)}\right|\leqslant \frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2}.$$

Thus (6) follows.

To verify the sharpness result, we show that for every $\varepsilon>0$ there exists a function in $\mathcal{S}^*(\varepsilon+1/2)$ that generates a function in $\tilde{\mathcal{S}}_M^*$ that is not starlike for some M>1. Let D(a) denote the pie shaped convex domain bounded by the left half of the unit circle \widehat{AC} and two line segments \overline{AB} and \overline{BC} having angles of inclination with the positive real axis $\pi \pm (1-a)\pi/2$ (0 < a < 1), respectively. Let g be the corresponding mapping function such that g(U) = D(a) with g(0) = 0 and g'(0) > 0. It is clear that g extends to a continuous function on the closure of Uthat is differentiable on U except at the preimages of the three corners of D(a). We denote the extended function as g also. Note the function $g(z) = a_1 z + \dots$, where a_1 is positive, is such that $\frac{1}{a_1} g$ is in $S^*(a)$. Given an $\varepsilon > 0$, let $a_{\varepsilon} = 1/2 + \varepsilon/2$. Choose an M > 1 such that $Mg(w_0) = g(z_0)$ defines a w_0 with $\arg[w_0g'(w_0)/g(w_0)] = (1/2 + \varepsilon/8)\pi/2$. M can be chosen in this manner since $w_0 \to z_0$ as $M \to 1$ and $\arg [w_0 g'(w_0)/g(w_0)]$ increases to $\arg [z_0 g'(z_0)/g(z_0)] = (1/2 + \varepsilon/4) \pi/2$. Now we shall construct a sequence of domains which converge to $D(a_{\varepsilon})$ and such that their corresponding mapping functions will converge uniformly on compact subsets of U to g. Let n be a large positive integer. Consider the domain bounded by an are $\widehat{A_nC_n}$ that is the left half of a circle centered at the origin with $\operatorname{Im}\{A_n\}$ >0, the line segment $\overline{C_nB_n}$ parallel to \overline{CB} , a line segment $\overline{E_nD_n}$ of length 1/n, parallel to CB and having $g(z_0)$ as its midpoint, and the line segments $\overline{A_n}D_n$ and $\overline{E_n}B_n$ that are parallel to \overline{AB} and that complete the boundary of this simply connected domain. Denote this domain as G_n with corresponding mapping function g_n such that $g_n(U) = G_n$. It is clear that as $n \to \infty$, G_n converges to $D(\alpha_s)$ in the sense of Carathéodory. From the Carathéodory convergence theorem [5] g_n converges to g uniformly on compact subsets of U. For each n, let z_n be the point on the unit circle such that $g_n(z_n) = g(z_0)$. From the construction of g_n we have $\arg \left[z_n g_n'(z_n)/g_n(z_n)\right] = -\left(1/2 + 3\varepsilon/4\right)\pi/2$ for each n. Let w_n be the point in U such that $Mg_n(w_n) = g_n(z_n) = g(z_0)$. From the uniform convergence of g_n to g on compact subsets of U we have that $w_n \to w_0$ as $n \to \infty$, while Weierstrass' Theorem assures that $\arg[w_ng_n'(w_n)/g_n(w_n)]$ approaches $\arg[w_0g'(w_0)/g(w_0)]$. Thus there exists an integer N such that g_N is in

 $S^*(\varepsilon+1/2)$ while

$$\begin{split} \left|\arg\frac{z_N g_N'(z_N)}{g(z_N)} - \arg\frac{w_N g_N'(w_N)}{g_N(w_N)}\right| \geqslant \left| -\left(\frac{1}{2} + \frac{3\varepsilon}{4}\right) \frac{\pi}{2} - \left(\frac{1}{2} + \frac{\varepsilon}{8}\right) \frac{\pi}{2} \right| \\ = \left(1 + \frac{7\varepsilon}{8}\right) \frac{\pi}{2} > \frac{\pi}{2}. \end{split}$$

Therefore it follows from (6) that g_N generates a quasi-starlike function that is not starlike. This completes the proof of the theorem.

Let C(B) denote the subclass of S of function f such that f(U) is convex and $|f(z)| \leq B$, $z \in U$. The author can show by long, but straightforward, arguments that there exist finite B's for which there are functions in C(B) that generate quasi-starlike functions that are not starlike. Thus there exists a finite B_0 that is the supremum of all B's such that if $f \in C(B)$, then f generates a quasi-starlike function that is starlike for all M > 1. The following corollary gives a lower bound for B_0 .

Corollary. If $f \in C(B)$ with $B \leq \sqrt{32/27}$, then f generates a quasistarlike function that is starlike for all M > 1.

Proof. In [2] Brannan and Kirwan proved that if $f \in C(B)$, then $f \in S^*(\alpha)$ with

(8)
$$\alpha = 1 - \frac{2}{\pi} \arcsin \left[\delta(B) / B \right],$$

where $\delta(B)$ denotes the Koebe constant for C(B) (i.e., the radius of the largest open disk centered at the origin and contained in the image of U under every function in C(B) for a fixed B). The value of $\delta(B)$ has been determined by Krzyż in [7] to satisfy

$$\delta(B) = B\sin\theta,$$

where θ is the unique solution of the equation,

(10)
$$(\pi + 2\theta)\sin\frac{4\pi\theta}{\pi + 2\theta} = 2\pi B^{-1}\cos\theta.$$

The result follows by letting a=1/2 in (8) and then solving for B in (9) and (10).

References

^[1] D. Brannan and W. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2) 1 (1969), p. 431-443.

^{[2] —} The Maclaurin coefficients of bounded convex functions, Bull. London Soc. (2) (1970), p. 159-164.

- [3] I. Dziubiński, Quasi-starlike functions, Bull. Acad. Polon. Sci. 16 (6) (1968), p. 477-479.
- [4] Quasi-starlike functions, Ann. Polon. Math. 26 (1972), p. 175-197.
- [5] G. M. Goluzin, Geometric theory of functions of a complex variable, Trans. Math. Mono. Amer. Math. Soc. 26 (1969).
- [6] J. A. Jenkins, On circularly symmetric functions, Proc. Amer. Math. Soc. 9 (1958), p. 82-87.
- [7] J. Krzyż, Distortion theorems for bounded convex functions, Bull. Acad. Polon. Sci. 8 (9) (1960), p. 625-627.

Reçu par la Rédaction le 25.7.1974