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On quasi-starlike functions
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Abstract. Let 8% be the usual clags of normalized starlike functions F(z) on the
unit disk T = {&: |#] < 1}. If g(2) is vegular in U and satisfies the condition MF [g ()]
= F(2), #¢ U, for some Fe 8% and some positive number M > 1, then g is said to be
in GM, In Ann. Polon. Math. 20 (1968), p. 280-282 and ibidem 26 (1972}, p. 175-197,
1. Dziubinski defined the class G¥ and called ¢ in G™ a quasi-siarlike function. He.
raiged the question of inclusion relations between 8* and GM and asked if every bounded
starlike funetion is quasi-starlike. We answer the question in the negative by exhibit-
ing a bounded starlike function that is not guasi-starlike. We also show that it # is either
a strongly starlike funetion of order 1/2 as defined by Braunan and Kirwan in J, Lon-
don Math. Soc. {2) 1 (1969), p. 431443, or if F is a circularly symmetrie function,
then g defined by M Flg(2)] — F(z) is starlike. We also show that the 1/2 is best
possible in the sense that for every e 0 < ¢ 1/2, there exists a strongly starlike
function f of erder £--1/2 such that the g defined by Mf(g(s)] = f(¢) is not starlike.

1. Introduction. Let § denote the class of regular univalent functions
fiz) = g-+a,2°+ ... in the unit disk U. Let 8% denote the subelass of &
of functions f such that f(U) is starlike with respect to the origin. We use
starlike to mean starlike with respect to the origin. In [3] and [4] I. Dzia-

bingki infroduced the class of functions 87}1 that he called guasi-starlike.
He defined for M > 1,

Ny = {g: Mf[g()] = f(2), fe 8%, ze U},

where g is said to be generated by f. Then Mg(z) =z ... is a normalized
quasi-starlike funetion and is in 8. In [4] Dzinbifiski posed the problem
as to whether every starlike function bounded in U is & normalized quasi-
starlike function. He also discussed the difficulty in obtaining conditions
for a quasi-starlike function to be starlike. He stated that the difficulty
arises because a quasi-starlike function can be easily constructed from
any given starlike function.

In this note we give an example of a bounded starlike function that
is not a normalized quasi-starlike function and give some sufficient con-
ditions for a normalized quasi-starlike function to be starlike.

2. An eiample. Let 7 be the bounded starlike function such that
F(U) is a disk minus two radial slits.” The disk is centered at the origin
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and of radius M, while the slits are non-vertical, non-horizontal an
Symmetric about the real axis. We will show that F can not be a normal
ized quasi-starlike tunction. Assume to the contrary. Then there exist
an fin 8% and an M > 1 such that F(z) = Mf~'[f(2)] M]. For any ge
Xlet f(X) = {f(x): we X}. We first show that S(U) must be a glit domain
Let g(z) = F(2) | M with F as defined above. Since fe 8%, flg( U)] = f(oy
is a starlike domain and Tlg(] = (o) ~F() uf(ly), where Ml and M7
are the symmetric, radial, linear slits in £(T). Since f [g(U)] is starlike,
J(l) and £(1,) must pe radial slits. It now follows eagily from the equajtionj

[
HOY=fL) uf(ly) = ﬁﬂr)!

that f(TU) is the Plane minus two radial slits, :
From this geometric description, f must assume the following form::‘

2
(1 —ey2)*(1 — a57)* "

{(2) fz) =

Tor some a, 0< g < 2,and |og| =1, k = 1, 2. Dziubifski showed in [4],
Theorem 3, that the only time a function of the form (2) generates a quasi- |
Starlike function that is starlike is when a =1 and o, = expi( —1)k-1g,
k=1,2 for any 0e (0, ). This would imply the two radial slits in fo
are opposing slits (i.e., their arguments differ by =). But this would foree
the slits in #(T) to be opposing slits also. This contradicts the definition
of ¥. Therefore F is g bounded starlike funotion that is not a normalized _
quagi-starlike function.

3. Conditions for starlikeness. T establish these conditions we need
the definitions of two subelasses of 8. Jenking stated in [6] that a domain .
D ig civeularly symmetric with respect to the positive reals if every cirele
‘centred at the origin intersects I in at most one are ¥ such that y is sym-
metric with respect to the positive reals. We 8ay a function fis in ¥ if F
is in 8 and f( {7} is circularly symmetric with respect to the positive reals,
We will suppress the term “with respect to the bositive reals’, Algo, in
[1], Brannan and Kirwan defined the clags of strongly starlike funections
8*(a), where, for given a,0 < a < 1, fe 8%(a), if and only if

' (2)
f(z)

The main theorem is as follows:
THEOREM. Let F be in Sar with F defined by

am
§—2—, ze U.

)

arg

@) MfIF()] = f(z), zeU
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or fe 8 and M > 1. If either
(a) fe ¥, or
(b) fe 8" (a), 0<< a=<C1/2,
hen MF is in 8. The 1j2 in (b) is sharp.
Remark. The sharpness result of (b) is in the sense that for every
&> 0 there exists a function f, in 8"(e-+1/2) that generates a function
- in 8% that is not starlike for some M = M(s).

Proof, Take the logarithmic derivative of (4) with respect to 2 and
hen multiply by # to obtain:

d d d
L /TP 57 =g d
fTF(2)] - f@
Let w = F(z2), where |wj< 1 and let f'(w) = dg;r)) . Then using

{4) we have

| 5 @'(@) _ fw) ')
F(z) wf'(w)  f(#)

Since MF is starlike if and only if

2F' (2)

™
. arg Ti2) 5 ze U,
© we need only show that conditions (a) and (b) separately imply that
A fw) | =
= {6) I&I‘ . < - ge U.
BHE )| T2

To prove part (a) of the theorem, consider an f in Y. Let P({)
= If' (&) f(£) for any Ce U. It follows from a result of Jenkins in [6] that
il fe ¥, then either f is the identity function or

Im {z; Im {f(2)} > 0,
(m 2e T.
Im {z} Im {P{2)} = 0,

The case when f is the identity follows immediately, so assume f
is not the identity. Consider the two cases, Im{z} > 0 and Im{z} < 0.
When Im{z} > 0, since F(2) = w is defined by (4), we have that Im{w}
= 0. Hence, since fe Y, property (7) assures that Im{F(z)} =0 and
Im {P(w)} = 0. Thus, since Re{P(2)} and Re{P(w)} are positive from the
starlikeness of f, we have 0 < argP(2) << =/2 and 0 < argP (w) < =/2 for
Im {z} > 0. Hence |arg[P(2)/P{w)}| = |argP(z) —argP(w)| = [I&rgP(z)l —
~—iargP(w)|| < max[argP(w), argP(2)]<< =/2. A corresponding argu-
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ment will show that if Im{e} < 0, then |arg [P {z)/P{w)]] < m/2. There!
fore (6} follows.

For part (b) of the theorem, let fe §*(a) for 0 < o < 1/2. Then using
(3},

o' (z)  flw) | |

METR) o) |
Thus (6) follows.

To verily the sharpness result, we show that for every s > 0 there
exists a function in 8%(e+1/2) that generates a function in S’Ef that - is
not starlike for some M > 1. Let D(¢) denote the pie shaped convex
domain bounded by the left half of the unit circle A€ and two line seg-

ments AB and BO having angles of inclination with the positive real
axis w1l —a)n/2 (0 a=< 1), respectively. Let g be the corresponding
mapping function such that ¢(U) = D(a) with g{0) = 0 and 7 (0) > 0.
It is clear that ¢ extends to a continuous function on the closure of U
that is differentiable on U except at the preimages of the three corners
of D(a). We denote the extended function as ¢ also. Note the function

A ffﬂl} Tom =
J+Jarg Ful 15171735

: 1
g(a} = a2+ ..., where a, is positive, is such that —9 is in 8% (a). Given
1

an &> 0, let a, = 1/24¢/2. Choose an M > 1 sueh that Mg (we) = g(z,)
defines a w, with arg[w,g (w,)/g(ws)] = {1/24+&/8)=/2. M can be chosen
in this manner since w, +2, as M —>1 and arg [wog’ (wo} /g (w,)] increases
to arg 2,0 (20) fg(20)] = (1/2 + ¢ {4)m/2. Now we shall construct a sequence
of domains which converge to D(a,) and such that their corresponding
mapping functions will converge uniformly on compact subsets of U to g.
Let n be a large positive integer. Consider the domain bounded by an

are A:b’n that is the left half of a circle centered at the origin with ITm{4,}
> 0, the line segment ¢, B, parallel to OB, a line segment H, D, of length
1/n, parallel to CB and having ¢(2,) as its midpoint, and the line seg-

ments 4,0, and H, B, that are parallel to AB and that coraplete the
boundary of this simply connected domain. Denote this domain as @,
with corresponding mapping function g, such that 4, (U) =6,. Tt is
clear that as » -—=co, &, converges to D{a,) in the sense of Oarathéodory.
From the Carathéodory convergence theorem [56] g, converges to g uni-

formly on compact subsets of U. For each n, let 2, be the point on the 1

s

unit circle such that g,(2,) = ¢(2,). From the construction of g, we have
arg (2,0, (%) /9, (2,)] = —(1/2 4-3e/4)x/2 for each n. Leb w, be the point |
in U such that My, (w,) = g,(z,) = ¢(2). From the uniform convergence J
of g, to ¢ on compact subsets of I/ we have that W, —> W, a8 # —> oo, while
Weierstrass’ Theorem assures that arg [w,, ¢, (%w,}/g,(w,)] approaches
arg [wyg (we)fg(wy)]. Thus there exists an integer N such that g, is in
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*(e-+1/2) while

o A (y)  wngl (wy) 2; _(}+§j)f_(}+f)§]
9 () I () 2 4/2 2782

(1+78 1-:>11:
o 8/27 9’

:5:_.: Therefore it follows from (6) that gn generates & quasi-starlike funetion
tha{ is not starlike. This completes the proof of the theorem.

Let O(B) denote the subclass of § of function f such that f(U) is
~ convex and (f(2)| < B, ze U. The author can show by long, but straight-
forward, arguments that there exist finite B’s for which there are functions
- inC (B) that generate quasi-starlike functions that are not starlike. Thus
~ there exists a finite B, that is the supremum of all B’s such that if fe C(B),
- then f generates a guasi-starlike function that is starlike for all 3 > 1.
. The following corollary gives a lower bound for B,.

- Cororrary. If fe O(B) with B< V32/27, then f generates a guasi-
- starlike funciion that is starlike Jor oll M > 1.

Proof. In [2] Brannan and Kirwan proved that if fe C(B), then
 fe8%(a) with .

(8) a=1-— E—arcsin [§(B)/B],

~ where 0(B) denotes the Koebe constant for ¢ (B) (i.e., the radius of the
largest open disk centered at the origin and contained in the image of
U under every function in ¢ (B} for a fixed B). The value of d{B) has heen
. determined by Krzyz in [7] to satisty

- (9) 8{B) = Bsin®,

where 6 is the wunique solution of the equation,

. o
. (10) (7 26) sin — 5 = 2mBcos .

™

The result follows by letting a = 1 /2 in (8) and then solving for B
in (9) and (10).
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