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Abstract—In this paper, we gtudy the problem of controlling & tinear system with polynomial
controls. We establish upper bounds of admissible polynomial controls in two special cases: systems
with distinct eigenvalues and systems with all real eigenvalues. Tor certain other classes we ghow
that the existence of such controt of & minimum possible degree i8 equivalent to questions about the
existence of multiple zeros for certain classes of entire functions. @ 2001 Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

In this paper, we consider the problem of controiling an autonomous linear finite-dimensional

system of the form

& = Az + bu, M
where z € R, between two arbitrary points in R™. Necessary and sufficient conditions for the
existence of a controller and construction of a controller were given by Kalman in the seminal
paper [1] and the result is reproduced in almost every elementary control theory text. The
standard controller i8

T -1 .
uft) =t e At ( f e Atphle=A't dt) (e'AT:v(T) —x(0)) , (2)
0
and the solution is easily found by finding the point of mintmum L? norm on the linear variety
T
AT (T) — z(0) = / e~ Avbu(s) ds. @
0

Unfortunately, this control law is not very practical for most purposes. Since it optimizes 2
minimum fuel cost criterion, the control activity takes place as close as possible to 0 and the
optimal maneuvers tend to be quite dramatic.

This raises the interesting question of just what control laws are contained in the solution set
of the linear variety (2). There is a surprisingly small literature on this question. Brockett and
Searamuzzo [2] have studied this question in the context of controlling disk drives and have been

{This research was supported by NEF Grants ECS 9707927, ECSe720357, and NATO Grant CRG.CRGA973057.
$This research was supported by NSF Grants ECS 9706312 and ECS 0720357,

0805-7177/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. Typeset by AmS-TeX
PIL 50895—7177(00)00230—2



80 R. W. BARNARD et af,

granted a United States patent based on their results. It is easy to see that by adjusting the
Hilbert space norm, a very large number of solutions can be obtained, These have very interesting

the variety (3) and, if a polynomial does exist, what is the minimal degree of such a polynomial?
Thhis later problem, despite its simplicity, is surprisingly difficult to solve. In this paper, we give
complete answers to the question in the case that the system matrix hag distinct eigenvahies and

of distinct eigenvalues the system is controllable with polynomials of degree n, and the second
reduction will be used in Section 3 to show that the system is controilable with polynomials
of degree n — 1 in the case that the eigenvalues of the system are real. In the second section,
we will show by example that polynomials of degree 7 — 1 do not suffice if the eigenvalues are

2. BASICS

We begin by considering the linear system of equation (1)
& = Az + bu,

with initial data 2(0). The solution is given by
i
z(t) = e*z(0) +f e pu(s) ds.
)]

The problem of controllability is to determine conditions on T, 2{0), and z(T") so that there exists
a control u(t) such that the equation

a(T) = eATz(0) + f ) e AT py(s) ds
Lt}

is satisfied. By multiplying both sides of the equation by e~47 the problem is reduced to the
form of equation (3). Thus, we see that the System is controllable in time 7" if and only if the

linear operator

T
L('u,)*--/0 e bu(s) ds : ) (4)

is onto ®™, In thig contexs, it is natural to specify the domain of L and to seek conditions under
which the operator is onto, There are several classical hecessary and sufficient conditions for
the operator to be onto when the domain s, for example, the set of all entire functions. These
conditions are due to Kalman ).
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THEOREM 2.1, (See [1].) The foﬂowjﬁg are equivalent.
1. There exists a control u such that

T
z(T) = e*Tz(0) —I~f AT pu(s) ds
_ 0 _

is satisfied for all (T}, z(0}, and all T > 0.
9. The rank of the matrix (b, Ab, A%b, ..., A"~'b] is n.
3. The matrix

T , :
f e~ Abbe At dt
0

is invertible.

The geometric properties of the matrix in item 3 are discussed at length in [5].

We begin by showing that conditions of the preceding theorem are equivalent to the condition
that there exists a polynomial control which satisfies condition 1 of the theorem. For the sake of
completeness, we include & proof.

PROPOSITION 2.1. The linear system & = Az + bu is controllable if and only if there exists a
polynomial p(t} such that :

T :
#(T) = e*Tz(0) +/O eMT=8pp(s) ds

iz satisfied.
PROOF. Substituting the control law

- -1
ult) = be 4t e~ Atph e~ At dt etz (T) — z(0)
0 ( )

into the system equations, we see that

‘ o .
e~ ATx(T) — z(0) = z anf e 4%bs™ ds.
0

n=0

Since the left-hand side of the equation is arbitrary, we have that the set of vectors

T
f e A%hsdsin=0,1,...
]

spans B®". Since R” is finite-dimensional, there exists a finite subset that spans, say n < N, and
hence, there exist 7;8 such that '

T

N
e~ ATz (T} — z{(0) = Z Tn / e~ A%hs™ ds

n=0 0
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where

N
p(s) = Z Tns".

n=0
We will see later that there are other ways of proving this fact, but this proof is very simple.

From the proof of the proposition, we obtain the first reduction of the problem which we state
in the form of a proposition.

PROPOSITION 2.2. The system & = Az -+bu is controllable with a polynomial control of degree N
If and only if the matrix

T T T
f e"’“bds,f e_A‘?bsds,...,f e~ 4%bs™ ds
0 0 0
has rank n.

From this we see that N > n ~ 1. Now consider the one-dimensional equation
T = Az +u.
The solution of the system at time 7' is
T
a(T) = Mz (0) + / ATy (s} ds,
0

and if this system is controllable by a polynomial of degree 0, then we must have

R |
e~ M g(T) — z(0) = Q=

where o = u(t). So note that if A = i27rm/T', then the right-hand side i 0, and hence, there will
exist pairs of initial and terminal points which are not controllable. On the other hand, if A is
real, then the function (e’ --1)/A is nonzero, and hence, by appropriate choice of @, the equation
is always satisfied. We will now present an example that shows that even for systems with real
coeflicients polynomials of degree n — 1 may not suffice.

ExAMPLE 2.1. There exists a countable set of times T for which the system

dfz\ [0 1 + 0 "
dt\y/ \-1 0 1
is not controllable with a polynomisl control of degree 1,

DEMONSTRATION. The fundamental solution is

cost sint
—sint cost

exp At = (
We must show that the operator
7 T
Liu) = / {exp At)bu{t) dt
0

is not onto for controls of the form
u(t}) = a + bt.
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This is equivalent, by Proposition 2.2, to showing that the determinant

T T
/ costdt f tsintdt
0 0

T T
f —~gintdt f tcostdt
0 )

has countably many zeros as a function of T'. Doing the four integrations yields

D(T) =

T
fsintdt:l—cosT,
0
T
/ costdt =sinT,
0
T
f tsintdt = —TcosT +sinT,
0

T .
' f tcostdt = TsinT ~ 1+ cosT.
0

Evaluating D(t), we have

D(T) = (sin T)(TsinT ~ 1 + cos T) + {1 ~ cos T)(~T cos T -+ sin iy
=T —TecosT.

Setting this equal to 0, we have

T=0 and
T=(2n+ 1)-;-;-.

Thus, there is a zero in every interval of length 7.

We now consider the linear operator L and reduce the problem of controllability to a functional
question. We have the following proposition. Let P™ denote the linear space of polynomials of
degree no greater than m.

PROPOSITION 2.3. The system & = Az + bu is not controllable with a polynomial of degree less
than or equal to N if and only if there exists a vector ¢ such that

T
dL{u} = / demMbu(t)dt =0
0

when restricted to PV,
PRrRoOOP. Since L is linear, the image of L with domain PN is a linear subspace of R™. If the

system is not controllable, then L is not onto, and hence, there exists a vector ¢ orthogonal to
the image of L, which is just the conclusion of the proposition. '

3. REAL EIGENVALUES

In this section, we consider the special case of real eigenvalues. We use a classical result of
Pélya and Szegd to establish the result.

THEOREM 3.1. Consider the controllable system

& = Az + bu, z e R
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If the matrix A has real eigenvalues, then the system is controllable with a polynomial control of
degree n — 1.
Proor. We will show that the operator

1
L{u) :f e hu(t) dt
o
maps P*~! onto R*. Suppose not; then there exists a vector ¢’ such that ¢/L = 0 and
1
¢ L{u) = / ce=Mbu(t) dt.
0

Since A has real eigenvalues, we can write the kernel

&
de At = Zpi(t)e)“'t,
i=1

" where

k
Z degpi(t) + k = n.
f==1

We use the following fact from Pélya and Szegd [6].

LEMMA 3.1. (See [6, Vol. II, p. 46, No. 75].) Let the polynomials;Pi(m),Pz(m), ..., Pi(z) be not
identically zero and of degree my — 1,mga — 1,...m; — 1, respectively, and let the real constants

a1, @2, .. .,0; be distinct. The function g(z) = Pi(z)e®®+ .- + B(z)e™® has at most my + mg +-
«oe 4 my — 1 real zeros.
Using this result, ¢’'e~4tb has at most n — 1 real zeros X1y .0, 0n_1. Let
n-—1
u(t) = [] (t—a).
‘ i=1
Then

e~ Mhu(t)

does not change sign, and since ¢'L = 0, we must have ¢’ = 0, and hence, L must be onto and
the system is controllable with polynomial control of degree n — 1.

4. DISTINCT EIGENVALUES

In this section we will show, using the first reduction, that if the system has distinct elgenvalues,
then it is controllable with a polynomial control of degree n. Without loss of generality, we will
assume that 7' = 1.

THEOREM 4.1. Consider the controllable system
&= Az + bu, z e R™

If the system has distinct eigenvalues, then it is controllable with a polynomial control of degree
no greater than n.

ProoF, Without loss of generality, we may assume that the matrix A is diagonal with eigenvalues
—~A1y ..., —An and that the vector b has no entry equal to zero. We construct the nxn+1 matrix

whose i*® column is the vector

1 1 i
i = f e~ Attt dt = f bieMitidt,.. ., f bne =ttt dt.
0 0 4]
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Now let . .
F(z) :fo et dt = e—;i

Let

F(\M)  DIFEY(A) - DHEYM) DMEF)Y (M)

F(x) DF)(A) - DHF)()  DYF)(r)

H=| E : : :
F(Ano1) DEY(Aa-1) o DPHEF) (A1) DMF) (A1)

F(A) DFEYA) - DHEYOW)  DM(F) (M)
and
' h o 0

B= :
0 - b,

It is immediate that the system is controllable with polynomial control of degree n if and only if
the rank of BH is n, and hence, if and only if the rank of H is n. Let

[ F(n)  DE)XN) - DVHEY(A) DME) (M)
Fh) DE)) - DYF)(2)  DMF)(h)
H—| : : . o
F(An-1) DF)(An-1) - DV7HE)(Anei) DME) (Anmt)
F(h) DE)Ow) -+ DMF)(W)  D(F)(w)
Pzy  DF)) - DVIFN)  DUF)2) /

We will show that the rank of H(z) is n except at the points z = Ay.
We assume that we have shown that for £ = 1 and for all k& < n that the result is true. Now
let ¢ = (a3,ag,...,8n-1, —1) and consider the system dH(z)=0.
We need the following lemma which is simply proved by induction.
LemMa 4.1, The function
: e*—1

z

Fz) =
satisfies the following differential recursions:

2DF(z)={z—1)F(z) +1,
2DFFER(z) = (2 - k ~ 1) DMLF(2) + kD*F(2).

Now we use the last n columns of ¢/ H(z) = 0 and substitute the values for D¥(F)(z) into the
last relation of Lemma 4.1. This gives a set of n — 1 homogeneous equations in the n—1 unknown
values of the a;s. Now these equations have a nontrivial solution if and only if the determinant
of coefficients is 0, However, the coefficients are linear functions of z, and hence, the determinant
is either a polynomial of degree n — 1 in z or it is identically zero. If it is not identically zero,
then we know that it is zero precisely when z = A;. Now if the determinant is identically zero,
then every value of z leads to a nonzero solution in terms of the e;s, and this contradicts the fact
that if the eigenvalues of the state matrix are real then the determinant has full rank.

This theorem then shows that the example of Section 2 is controllable with a polynomial of
degree 2, but not with a polynomial of degree 1. It seems to not be feasible to generalize this
theorem to the case when there are multiple eigenvalues.
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5. ENTIRE FUNCTIONS

In this section, we show that in the case that the state matrix A has a single Jordan block, the
problem of polynomial controllability reduces to a problem concerning zeros of a certain class of
entire functions. '

‘THEOREM 5.1, A necessary and sufficient condition that

_Z 1 e 0

x1 T 0
d | T2 0 -= T2 0
S A I + ut), zelm (5)
e 0 1

Tn 0 0 z Tn 1

is controllable with a polynomial control of degree n is that

T
F(z)mfo e*tp(z) dt,

where p(t) is a nonnegative polynomial of degree n — 1, has no zeros of multiplicity n + 1.
ProoF. By a change of time scale it suffices to take T = 1. 'T'his system matrix is A = N + 27

where N is nilpotent, and hence,

At zteNt.

€ €

The operator L is then of the form
1
L(u) = f oMby (t) dt.
]

Let u € P". Suppose L is not onto for some value zo of z. Then there exists a vector ¢ such that
¢'L = 0 and also we have that ¢/e™*h = p(t) € P*. We now have, since ¢'L = 0,

1
JL(tF) = f etip(t)dt =0, k=0,...,n.
4]

Now ¢/ L(t*) = %};c’ L(1}, and hence, zp is a zero of multiplicity n + 1.
Now suppose that there exists a polynomial p(£) of degree n — 1 such that

1 .
f(z) = fg ep(t) dt

has a zero, zy of multiplicity n» + 1. Then we have that

k 1
;?f(z)z /0 e* t*p(t) dt

has a zero at z for k =0,...,n. Now there exists a vector ¢ such that p(t) = ¢’e"tb, and hence,

1
/ deVptbdt =0,  k=0,...,n
0
Thus, ¢’ L{u) = 0 for u € P™. ' |

There is great deal known about the zercs of entire functions, but there is very little literature
on the existence or distribution of multiple zeros of entire functions. The problem is, of course,
that multiple zeros are unstable with respect to parameter change just as are multiple eigenvalues
of the state matrix.
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6. MOMENTS

In this section, we simply comment that the problem of polynomial controllability is a special
problem from the theory of moments. Consider any function f(£) = ¢/e4®h. The moments of this
function are the values '

i
f Ftdt,  k=0,1,....
1]

A question of fundamental interest is to determine when can the function f(t) be recovered from
its sequence of moments. There is of course an enormous literature on this problem and its
variations. The problem of polynomial controllability can be stated in the following manner.

PrOPOSITION 6.1. The system & = Az +bu Is controllable with a polynomial control of degree n
if and only if for every function f(t) = ’e*tb the first n + 1 moments being zero implies that the
function is identically zero.

The proof of this proposition is just a restatement of the previous results.

7. CONCLUSIONS’

The general question, what is the minimum degree of a polynomial input that can control
the state of a linear system, remains open. This is an important question due to the following
observations. First, polynomial interpolation is vastly simpler than exponential interpolation.
Second, if the system to be controllable is stable, then the state asymptotically approaches
polynomial functions provided that the inputs are polynomials. It is evident from Theorem 5.1
that this question is deeper than what appears at first sight, and it is closely related to open
questions in the theory of complex variables regarding the existence and distribution of multiple
zeros of an entire function.
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