Journal of Computational and Applied Mathematics 46 (1993) 271–279 North-Holland

271

CAM 1342

An application from partial sums of e^z to a problem in several complex variables

Roger W. Barnard, Kent Pearce

Department of Mathematics, Texas Tech University, Lubbock, TX, United States

Richard S. Varga *

Department of Mathematics and Computer Science, Kent State University, Kent, OH, United States

Received 15 October 1991 Revised 1 April 1992

Abstract

Barnard, R.W., K. Pearce and R.S. Varga, An application from partial sums of e^z to a problem in several complex variables, Journal of Computational and Applied Mathematics 46 (1993) 271–279.

Let $B_r^n = \{z \in \mathbb{C}^n : |z| < r\}$, where $|\cdot|$ is the Euclidean norm, and for $X \subset \mathbb{C}^n$, let $\mathscr{H}X$ denote the closed convex hull of X in \mathbb{C}^n . In 1990, Graham showed that if f is a normalized holomorphic map from B_1^n into \mathbb{C}^n , and if f is either an open map or a polynomial map, then there is a sharp, uniform constant a, a given by $ae^{1+a} = 1$, such that $\mathscr{H}f(B_1^n) \supset B_a^n$. Graham posed the question to find, for normalized polynomial maps f of degree m, the best constant a_m so that $\mathscr{H}f(B_1^n) \supset B_{a_m}^n$. We answer this question and obtain, for each m, the sharp constant

$$a_m = a + \frac{a \ln m}{2(1+a)m} + \frac{a \ln \left\{ \sqrt{2\pi} (1+a)/a \right\}}{(1+a)m} + o\left(\frac{1}{m}\right), \quad m \to \infty.$$

We also note that this solution extends an old result of Pólya and Szegő.

Keywords: Holomorphic maps in several complex variables; zeros of the partial sums of e^z; the Szegő curve.

In this short note, we show how a numerically motivated result on the zeros of the partial sums of e^z in classical one complex variable function theory can be used to answer a question arising in several complex variables. To put the problem in context, we introduce the following

notations. With $\mathbb{C}^n := \{z = (z_1, z_2, ..., z_n): z_k \in \mathbb{C} \text{ for } k = 1, 2, ..., n\}$, let $|z|^2 := \sum_{k=1}^n |z_k|^2$ and $B_r^n := \{z \in \mathbb{C}^n: |z| < r\}$, with $B_r := B_r^1$, $B_r := B_1^n$ and $B_r^n := B_1^n$. We consider the classes

 $\mathcal{S} := \{f : f \text{ is analytic and one-to-one on } B, \text{ with } f(0) = 0 \text{ and } f'(0) = 1\},$

 $\mathcal{S}^* := \{ f \in S : f(B) \text{ is starlike with respect to } z = 0 \},$

 $\mathcal{K} := \{ f \in \mathcal{S} : f(B) \text{ is convex} \}.$

Classical results (cf. [6]) obtained at the beginning of this century are as follows.

Distortion theorem:

$$\frac{(1-|z|)^{p-1}}{(1+|z|)^{p+1}} \leqslant |f'(z)| \leqslant \frac{(1+|z|)^{p-1}}{(1-|z|)^{p+1}}, \quad z \in B;$$
(1)

Growth theorem:

$$\frac{|z|}{(1+|z|)^{p}} \leqslant |f(z)| \leqslant \frac{|z|}{(1-|z|)^{p}}, \quad z \in B;$$
(2)

Koebe Covering theorem:

$$f(B) \supset B_{1/2^p},\tag{3}$$

where p=2, for all f in \mathcal{S} and in \mathcal{S}^* . All three theorems are sharp when p=2 for the function, known as the Koebe function, defined by

$$f(z) := \frac{z}{\left(1 - z\right)^p}.\tag{4}$$

Corresponding results hold for functions $f \in \mathcal{X}$ with the exponent p = 1 in (1)–(4).

In 1933, in the appendix of Montel's book on Univalent Function Theory, Cartan [5] posed the question: Can the Distortion, Growth and Koebe Covering theorems be extended to one-to-one functions f which are biholomorphic on B^n and normalized by f(0) = 0 and Jf(0) = I, where Jf denotes the Jacobian of f and I denotes the identity matrix? (The analogue of the Distortion theorem for f in (1) would give bounds for the modulus of the determinant of the Jacobian f.) Cartan also explicitly asked if there were extensions to the convex and starlike subclasses of maps from B^n into \mathbb{C}^n . In that appendix, he gave several examples of polynomial maps on \mathbb{C}^n . Since then, polynomial maps have been studied extensively in the literature of several complex variables.

That the three theorems cannot be directly extended to arbitrary biholomorphic maps from B^n into \mathbb{C}^n has been known for some time (cf. [7,9]). As a simple counterexample, consider the map $F(z_1, z_2) := (z_1, z_2 e^{\alpha z_1})$ for $\alpha \in \mathbb{R}$, so that F is a normalized, one-to-one and biholomorphic mapping from B^2 into \mathbb{C}^2 . It can be verified that for a suitable choice of α , each of the

Theorem A. Let f be a normalized biholomorphic map from B^2 into \mathbb{C}^2 with $f(B^2)$ a convex domain. Then, there exists a positive constant c such that

$$\frac{(1-|z|)^{c-3/2}}{(1+|z|)^{c+3/2}} \le |\det Jf| \le \frac{(1+|z|)^{c-3/2}}{(1-|z|)^{c+3/2}}, \quad z \in B^2,$$

where the constant c satisfies

$$\frac{3}{2} \leqslant c < 1.71\dots \tag{5}$$

In [2], it was conjectured that $c = \frac{3}{2}$. In [1], the next result was established.

Theorem B. Let f be a normalized biholomorphic map from B^n into \mathbb{C}^n with $f(B^n)$ a starlike domain. Then,

$$\frac{|z|}{(1+|z|)^2} \le |f(z)| \le \frac{|z|}{(1-|z|)^2}, \quad z \in B^n,$$

and

$$f(B^n) \supset B_{1/4}^n$$

Furthermore, the above inequalities and inclusion are all sharp.

Although many of the classical results in \mathbb{C}^1 follow from each other, the situation in \mathbb{C}^n for $n \ge 2$ is different, where new techniques of proof must be used, and the results derived appear to be independent of each other.

Theorems A and B were also obtained and improved later in [8,13].

A further result, answering Cartan's question, was obtained by Graham in an interesting paper [9], where he proved the following.

Theorem C. Let f be a normalized holomorphic map from B^n into \mathbb{C}^n with either f being an open map or f being a polynomial map. Let a be the unique positive constant satisfying $ae^{1+a}=1$, so that a=0.278 46.... If $\mathcal{H}X$ denotes the closed convex hull of X, then $\mathcal{H}f(B^n)\supset B_a^n$.

Note that if $f(B^n)$ is convex, then $f(B^n) \supset B_a^n$.

If we define the degree of a polynomial mapping \mathbb{C}^n into \mathbb{C}^n to be the maximal coordinate degree, then in [9], Graham posed the following question.

Question. If f is a polynomial map of degree m, m a fixed integer, can an $a = a_m$ be found such that

$$\mathscr{H}f(B^n)\supset B_{a_m}^n$$
?

A major tool used by Graham is a set of ideas introduced in [14]. It is shown in [14] that for each positive integer m, there exists a positive constant a_m and a set $\{\alpha_j\}_{j=1}^m$, where $\alpha_j \in \mathbb{C}$ for $j=1,2,\ldots,m$, such that

$$(i) \qquad |\alpha_j| \leqslant \frac{1}{a_m},$$

$$(ii) \qquad \frac{1}{m} \sum_{j=1}^{m} \alpha_j = 1, \tag{6}$$

(iii)
$$\sum_{j=1}^{m} \alpha_j^k = 0, \quad k = 2, 3, ..., m, \text{ if } m > 1.$$

Together, (ii) and (iii) imply that, for any holomorphic f mapping B into \mathbb{C}^n , the following representation formula is valid:

$$\frac{1}{m} \sum_{j=1}^{m} f(\alpha_j z) = f(0) + zf'(0) + O(|z|^{m+1}), \tag{7}$$

for $|z| < a_m$. The idea of the proof of [14] for the existence of $\{\alpha_j\}_{j=1}^m$ was to observe that the α_j 's satisfying (ii) and (iii) are the zeros of the monic polynomials p_m , defined by $p_m(z) := z^m P_m(-1/z)$, where $P_m(z) = \sum_{k=1}^m (mz)^k / k!$. If $s_m(z) := \sum_{j=0}^m z^j / j!$ denotes the familiar partial sum of e^z , then $P_m(z) = s_m(mz)$. As shown in [1], if f is a polynomial of degree m, then $\mathscr{L}f(B)$ contains the ball f(0) + zf'(0), $|z| < a_m$. Thus, an answer can be given to Graham's question by determining explicit bounds for the zeros of $P_m(z)$.

In 1924, Szegő [12] defined a simple closed curve

$$D_{\infty} := \{ z \in \mathbb{C} \colon |z e^{1-z}| = 1 \text{ and } |z| \leqslant 1 \}, \tag{8}$$

lying in the closed disk \overline{B} . D_{∞} has become known as the Szegő curve for the polynomials P_m . If $\{z_{k,m}\}_{k=1}^m$ denotes the zeros of P_m , it is known from the Eneström-Kakeya theorem (cf. [15, Chapter 4]) that $\{z_{k,m}\}_{k=1}^m \subset \overline{B}$ for each $m \ge 1$, and that $\{z_{k,m}\}_{k=1}^m \subset B$ for any m > 1. Clearly, the infinite set of all such zeros $\{z_{k,m}\}_{k=1,m=1}^{m,\infty}$ must possess at least one accumulation point in \overline{B} . In [12], Szegő showed that each accumulation point must lie on D_{∞} , and, conversely, that each point of D_{∞} is an accumulation point of these zeros. Subsequently, it was shown in [3] that all of these zeros lie outside of D_{∞} . These facts are illustrated in Fig. 1.

Carpenter et al. [4] considered the problem of accurately estimating the zeros of P_m . They introduced the arc defined by

$$D_m := \left\{ z \in \mathbb{C} : |ze^{1-z}|^m = \frac{m! e^m}{m^m} \left| \frac{1-z}{z} \right|, |z| \le 1 \text{ and } |\arg z| \ge \cos^{-1} \left(\frac{m-2}{m} \right) \right\},$$
(9)

for each $m = 1, 2, \dots$

(10)

natural analog of Buckholtz's result [3] for D_{∞}), then an answer to Graham's question would have followed. Indeed, numerical computations did suggest this, noting that in [4] the zeros of P_{27} appeared, up to plotting accuracy, to lie on the arc D_{27} (see Fig. 2). However, in an attempt to obtain more precise information about the zeros of P_m relative to D_m , it was discovered that the zeros of P_m do not all lie outside D_m for every $m \ge 1$. Indeed, it was shown in [16] that there exists a positive integer m_0 , such that at least one zero of P_m does not lie outside D_m for every $m > m_0$. A direct calculation indicates the rather surprising outcome that $m_0 = 96$. The size of m_0 necessitated great precision in calculating the zeros. Brent's MP package was used, with 120 significant digits, for these calculations.

Because of this result, it was natural to ask if a modification \hat{D}_m of the arc D_m could be found for which all of the zeros of P_m would be outside of \hat{D}_m , for each $m \ge 1$. This was done recently in [16] where, for each $m \ge 1$, the arc \hat{D}_m was defined by

$$\hat{D}_m := \left\{ z \in \mathbb{C} \colon |z e^{1-z}|^m = \frac{m! e^m}{m^m} \left| \frac{1 - \operatorname{Re} z}{z} \right|, |z| \leqslant 1 \text{ and} \right.$$

$$\left. |\arg z| \geqslant \cos^{-1} \left(\frac{m-2}{m} \right) \right\},$$

It is easy to verify by differentiation that

$$e^{-z}s_m(z) = 1 - \frac{1}{m!} \int_0^z \zeta^m e^{-\zeta} d\zeta,$$
 (11)

and, on replacing z by mz and ζ by $m\zeta$ and recalling that $s_m(mz) = P_m(z)$, we have

$$e^{-mz}P_{m}(z) = 1 - \frac{m^{m+1}}{m!} \int_{0}^{z} \zeta^{m} e^{-m\zeta} d\zeta = 1 - \frac{m^{m+1}}{m!} e^{-m}I_{m}(z),$$
 (12)

where

$$I_m(z) := \int_0^z (\zeta e^{1-\zeta})^m d\zeta.$$

Using integration along the radial path $\zeta = \rho e^{i\theta}$, $0 \le \rho \le r$, for the integral $I_m(z)$, we obtain

$$|I_m(z)| \le \int_0^r (\rho e^{1-\rho \cos \theta})^m d\rho.$$
 (13)

1 1 1 1 1 1 1 1

with careful use of the sign of cos θ . Since $\mu/(1+\mu)$ is strictly increasing, it follows that

$$|I_m(z)| < \frac{r(re^{1-r\cos\theta})^m}{m(1-r\cos\theta)} = \frac{|z||ze^{1-z}|^m}{m(1-\operatorname{Re} z)}, \quad 0 < r = |z| < 1, \ m = 1, 2, \dots$$

Thus, if $z_{k,m}$ is a zero of P_m , then

$$\frac{m^{m+1}}{m! e^m} I_m(z_{k,m}) = 1$$

from (12), so that (13) gives

$$\frac{m^m |z_{k,m}| |z_{k,m}e^{1-z_{k,m}}|^m}{m! e^m (1 - \operatorname{Re} z_{k,m})} > 1.$$

Therefore, all the zeros of P_m lie outside \hat{D}_m for all $m \ge 1$, as claimed. We now determine the point of \hat{D}_m which is closest to the origin, i.e.,

$$r_m := \min\{ |z| : z \in \hat{D}_m \}, \quad m = 1, 2, \dots$$
 (14)

since, by definition, $\rho(\phi)$ satisfies $\rho(\phi) \le 1$, which implies that $1 - \rho(\phi) \cos \phi \ge 0$. On differentiating (15) as a function of ϕ , a straightforward calculation gives that

$$\frac{\mathrm{d}\rho(\phi)}{\mathrm{d}\phi} = -\frac{\rho^2(\phi)\sin\phi[m(1-\rho(\phi)\cos\phi)-1]}{m(1-\rho(\phi)\cos\phi)^2+1}.$$
 (16)

The definition in (10) implies that $\cos \phi \leq (m-2)/m$, showing that the quantity in brackets in (16) is at least unity for any $m \geq 1$. Thus, for $z = \rho(\phi)e^{i\phi}$ on \hat{D}_m in the open upper half-plane, i.e., for $\cos^{-1}((m-2)/m) \leq \phi < \pi$, the derivative $d\rho(\phi)/d\phi$ in (16) is negative. This establishes that the point of \hat{D}_m , closest to the origin in the closed upper half-plane, is the intersection of the arc \hat{D}_m with the negative real axis, and, as the arc \hat{D}_m is, from (10), clearly symmetric about the real axis, the same is true for all of \hat{D}_m .

Returning to Graham's question, an a_m , affirmatively answering Graham's question, is defined by $a_m := r_m$ where

$$(r_m e^{1+r_m})^m = \frac{m! e^m}{m^m} \left(\frac{1+r_m}{r_m}\right), \quad m = 1, 2, \dots$$
 (17)

We remark that if a is the unique positive constant satisfying $ae^{1+a} = 1$, so that a = 0.27846..., then it can be shown from (17) that

$$r_m = a + \frac{a \ln m}{2(1+a)m} + \frac{a \ln\{\sqrt{2\pi} (1+a)/a\}}{(1+a)m} + o\left(\frac{1}{m}\right), \quad m \to \infty.$$
 (18)

We finally show that (18) is *sharp* in the following sense. It is well known that the partial sum $s_n(z)$ of e^z has exactly one negative real zero if n is an odd positive integer, and that it has no real zeros if n is an even positive integer. If $\{z_k(n)\}_{k=1}^n$ denotes the set of zeros of $s_n(z)$ and if we write $z_k(n) := r_k(n) e^{i\theta_k(n)}$ where $|z_k(z)| = r_k(n)$ and where $0 < |\theta_k(n)| \le \pi$, then from (11) we have

$$n! = e^{i(n+1)\theta_k(n)} \int_0^{r_k(n)} u^n e^{-u \cos \theta_k(n)} e^{-iu \sin \theta_k(n)} du, \quad n = 1, 2, \dots$$
 (19)

On taking moduli in (19),

$$n! \le \int_0^{r_k(n)} u^n e^{-u \cos \theta_k(n)} du, \quad n = 1, 2, ...,$$

so that

$$n! < \int_0^{r_k(n)} u^n e^u \, du, \quad \text{for any } \theta_k(n) \text{ with } 0 < |\theta_k(n)| < \pi.$$
 (20)

For *n* odd, say n := 2l + 1, let $\tilde{r}_{2l+1} > 0$ be such that $s_{2l+1}(-\tilde{r}_{2l+1}) = 0$. From (19) and (20), we have

$$(2l+1)! = \int_{0}^{\tilde{r}_{2l+1}} u^{2l+1} e^{u} du < \int_{0}^{r_k(2l+1)} u^{2l+1} e^{u} du$$

•							
			•				
					a		
	•						
		-					
	e ^r	•					
				,			
		٠					
						*	
	•						

R.W. Barnard et al. / Application from partial sums of e^z

279

for any zero $z_k(2l+1)$ with $|\theta_k(2l+1)| \neq \pi$. This shows that, for each odd positive integer m, the unique negative real zero of $P_m(z) = s_m(mz)$ is the closest zero of $P_m(z)$ to the origin. In other words, the very best choice of a_m , for every m = 2l + 1 odd, in Graham's problem is just \tilde{r}_{2l+1} . Now, in [11, II. Abschnitt, Exercise 215], it is shown that \tilde{r}_{2l+1} satisfies (18), with m replaced by 2l + 1. In this sense, the expression in (18), which holds for all integers m, is sharp and extends, to the case of even integers, the result of [11].

References

- [1] R.W. Barnard, C. FitzGerald and S. Gong, The growth and $\frac{1}{4}$ theorems for starlike mappings in \mathbb{C}^n , Pacific J. Math. 150 (1991) 13–22.
- [2] R.W. Barnard, C. FitzGerald and S. Gong, A distortion theorem for biholomorphic mappings in \mathbb{C}^2 , Trans. Amer. Math. Soc., to appear.
- [3] J.D. Buckholtz, A characterization of the exponential series, Part II, Amer. Math. Monthly 73 (4) (1966) 121-123.
- [4] A.J. Carpenter, R.S. Varga and J. Waldvogel, Asymptotics for the zeros of the partial sums of e^z. I, Rocky Mountain J. Math. 21 (1991) 99-120.
- [5] H. Cartan, Sur la possibilité d'extendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes, a note added to: P. Montel, *Leçons sur les Fonctiones Univalentes ou Multivalentes* (Gauthier-Villars, Paris, 1933) 129–155.
- [6] P. Duren, Univalent Functions (Springer, New York, 1983).
- [7] P. Duren and W. Rudin, Distortion in several variables, Complex Variables Theory Appl. 5 (1986) 323-326.
- [8] C. FitzGerald and C.R. Thomas, Some bounds on convex mappings in several complex variables, *Pacific J. Math.*, to appear.
- [9] I. Graham, Distortion theorems for holomorphic maps between convex domains in \mathbb{C} , Complex Variables Theory Appl. 15 (1990) 37-42.
- [10] I. Graham and H. Wu, Some remarks on the intrinsic measures of Eisenman, Trans. Amer. Math. Soc. 288 (1985) 625-660.
- [11] G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Vol. 1 (Springer, Berlin, 1954).
- [12] G. Szegő, Über eine Eigenschaft der Exponentialreihe, Sitzungsber, Berl. Math. Ges. 23 (1924) 50-64,
- [13] C.R. Thomas, Extensions of classical results in one complex variable to several complex variables, Ph.D. Dissertation, Univ. California, San Diego, CA, 1991.
- [14] F. Thorp and R. Whitley, The strong maximum modulus theorem for analytic functions into a Banach space, *Proc. Amer. Math. Soc.* 18 (1967) 375–394.
- [15] R.S. Varga, Scientific Computation on Mathematical Problems and Conjectures, CBMS-NSF Regional Conf. Ser. in Appl. Math. 60 (SIAM, Philadelphia, PA, 1990).
- [16] R.S. Varga and A.J. Carpenter, Asymptotics for the zeros of the partial sums of e^z. II, in: St. Ruscheweyh, E.B. Saff, L.C. Salinas and R.S. Varga, Eds., Computational Methods and Function Theory, Valparaíso, 1989, Lecture Notes in Math. 1435 (Springer, Heidelberg, 1990) 201-207.