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Abstract

-Barnard, R.W., K. Pearce and R.S. Varga, An application from partial sums of e* to a problem in several
complex variables, Journal of Computational and Applied Mathematics 46 (1993) 271-279.

Let BP={z=C"™ |z| <}, where || is the Fuclidean norm, and for X ¢ C”, let #X denote the closed
convex hull of X in C”. In 1990, Graham showed that if f is a normalized holomorphic map from B} into C",
and if f is either an open map or a polynomial map, then there is a sharp, uniform constant a, ¢ given by
ae**® =1, such that #f(B})> B2 Graham posed the question to find, for pormalized polynomial maps f of
degree m, the best constant a,, so that Zf(B') > B} . We answer this question and obtain, for each m, the
sharp constant ‘

a
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We also note that this solution extends an old result of Pdlya and Szegd.

Keywords: Holomorphic maps in several complex variables; zeros of the partial sums of £%; the Szegd curve.
In this short note, we show how a numerically motivated result on the zeros of the partial

sums of e* in classical one complex variable function theory can be used to answer a question
arising in several complex variables. To put the problem in context, we introduce the following
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notations, With C":={z =(z,, z,,...,2z,) z; €C for k=1, 2,.nh let |zP=50_ 1z, 17
and B" =={ze C" | z| <r}, with B, =B}, B=B{ and B":=B}". We consider the classes

&= {f: f is analytic and one-to-one on B, with f(0)=0and f'(0) = 1},
S*=1feS: f(B) is starlike with respect to z = 0},
F = {fe5: f(B) is convex}.

Classical results {cf. [6]} obtained at the beginning of this century are as follows.

Distortion theorem.

(1-1z)?™* (1+ 1z

mﬁslf’(ﬂ!éma z EB; (1)

Growth theorem.

Pz | |z}
< f(2)l <

a=izly EEED A ¥

Koebe Covering theorem: _
f(B)2B, 0, (3)

where p =2, for all f in % and in .%**. All three theorems are sharp when p =2 for the
function, known as the Koebe function, defined by
il 4
f(z) 1-z)" (4)
Corresponding results hold for functions f<€.% with the exponent p =1 in (1)—(4).

In 1933, in the appendix of Montel’s book on Univalent Function Theory, Cartan [S] posed
the question: Can the Distortion, Growth and Koebe Covering theorems be extended to
one-to-one functions f which are biholomorphic on B" and normalized by f(0)=0 and
JF(0) =1, where Jf denotes the Jacobian of f and I denotes the identity matrix? (The analogue
of the Distortion theorem for f in (1) would give bounds for the modulus of the determinant of
the Jacobian f.) Cartan also explicitly asked if there were extensions to the convex and starlike
subclasses of maps from B” into C". In that appendix, he gave several examples of polynomial
maps on C”. Since then, polynomial maps have been studied extensively in the literature of
several complex variables.

That the three theorems cannot be directly extended to arbitrary biholomorphic maps from
B” into C" has been known for some time (cf. [7,9]). As a simple counterexample, consider the
map F(z,, z,) =1(z,, z,e*™) for @ € R, so that F is a normalized, one-to-one and biholomor-
phic mapping from B? into C?. It can be verified that for a suitable choice of «, each of the
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Theorem A. Let f be a normalized biholomorphic map from B? into C* with f(B*) a convex
domain. Then, there exists a positive constant ¢ such that

(1 _ lzl)c—3/2 (1 + |zi)c73/2

2

where the constant ¢ satisfies

lge<1T1... . (5)
In [2}, it was conjectured that ¢ = 2. In [1], the pext result was established.

Theorem B. Let f be a normalized biholomorphic map from B" into C" with f(B") a starlike
domain. Then,

LA RSP LA
i+ 20 SIS ATy ’

and
f(Bn) 33{1/43

Furthermore, the above inequalities and inclusion are all sharp.

Although many of the classical results in C' follow from each other, the situation in C” for
n = 2 is different, where new techniques of proof must be used, and the results derived appear
to be independent of each other. '

Theorems A and B were also obtained and improved later in [8,13].

A further result, answering Cartan’s question, was obtained by Graham in an interesting
paper [9], where he proved the following.

Theorem C. Let f be a normalized holomorphic map from B™ into C" with either f being an open
map or f being a polynomial map. Let a be the unique positive constant satisfying aett?=1, so0
that a =0278 46... . If #X denotes the closed convex hull of X, then #f(B") D BJ.

Note that if f(B") is convex, then f(B") D BJ.
If we define the degree of a polynomial mapping C" into C” to be the maximal coordinate
degree, then in [9], Graham posed the following question. '

Question. If f is a polynomial map of degree m, m a fixed integer, can an a =4, be found
such that

FF(B") DBLY
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A major tool used by Graham is a set of ideas introduced in [14]. It is shown in [14] that for
each positive integer m, there exists a positive constant a,, and a set {a}2, where ¢, €C for
i=1,2,...,m, such that

_ 1
(1) |ajl"<-:1:3
1 m
() — Ta-1, ©)

(i) Y af=0, k=2,3,...,m, if m>1.
i=1

Together, (ii) and (iii) imply that, for any holomorphic f mapping B into C”, the following
representation formula is valid:

m:;w;nzif(ajz)2f(0)+zf’(0)+0(|zim“), (7)

for | z| <a,,. The idea of the proof of [14] for the existence of {a,}/2, was to observe that the
a;’s satisfying (ii} and (iii) are the zeros of the monic polynomials p,,, defined by p,(2) =
z"P,(—1/z), where P,(z)=Xp_ (mz)*/k!. If 5,(z) =¥ 2z’ /j! denotes the familiar partial
sum of e, then P, (z)=s,(mz). As shown in [1}, if f is a polynomial of degree m, then #f(B)
contains the ball f(0}+zf'(0), | z| <a,,. Thus, an answer can be given to Graham’s question
by determining explicit bounds for the zeros of P, (z).

In 1924, Szegd [12] defined a simple closed curve

D.={z&C:|ze! | =1and iz| <1}, (8)

lying in the closed disk B. D, has become known as the Szegd curve for the polynomials P,,. If
{z) n}ie, denotes the zeros of P,, it is known from the Enestrom—Kakeya theorem {cf. [15,
Chapter 4]) that {z, ,};"., € B for each m > 1, and that {z, };"; ©B for any m > 1. Clearly,
the infinite set of all such zeros {z, ,};7 , ., must possess at least one accumulation point in
B. In [12], Szegd showed that cach accumulation point must lie on D, and, conversely, that
cach point of D, -is an accumulation point of these zeros. Subsequently, it was shown in [3] that
all of these zeros He outside of D, These facts are illustrated in Fig. 1.

Carpenter et al. [4] considered the problem of accurately estimating the zeros of P,. They
introduced the arc defined by

mle™|1—z

ni

m-=2
m 1zl <1and Jarg z| >cos“1(~w-w)},

(9)

foreach m=1, 2,... .
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Fig. 1. Zeros of {P{z)1% .

natural analog of Buckholtz’s result [3] for D), then an answer to Graham’s question would
have followed. Indeed, numerical computations did suggest this, noting that in [4] the zeros of
P,; appeared, up to plotting accuracy, to lic on the arc D, (see Fig. 2). However, in an attempt
to obtain more precise information about the zeros of P, relative to D,,, it was discovered that
the zeros of P,, do not all lie outside D,, for every m = 1. Indeed, it was shown in [16] that
there exists a positive integer m, such that at least one zero of P, does not lie outside D,, for
every m > m,. A direct calculation indicates the rather surprising outcome that m, = 96. The
size of m, necessitated great precision in calculating the zeros. Brent’s MP package was used,
with 120 significant digits, for these calculations. )

Because of this result, it was natural to ask if a modification D,, of the arc D, could be
found for which all of the zeros of P,, would be outside of D, for each m > 1. This was done
recently in {16] where, for each m > 1, the arc D, was defined by

m!e”!1—Re z

D, ={zeC:|ze! #|"=

,lzl<1and

m

larg zi.zcos‘l(m%’;%)}, (10)
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Fig. 2. D5, and the zeros of Py (z).
It is easy to verify by differentiation that
1 .z .
_, o Tem-
e “s,(z)=1 m!j;)g’ e”* d¢g, (11)
and, on replacing z by mz and { by m{ and recalling that s, (mz) = P, (z), we have
m+i z mm+1
—mz =1F — ma—m{ — 1 e —m
TP, (2) =1 — fog e Al =1~ ——— e ", (2). (12)

where
L(z)= [ (¢e5)" de.
0
Using integration along the radial path ¢ = pe'®, 0 < p < r, for the integral I,(z), we obtain

11,(2)! éf(}r(pel‘P s 0" dip. (13)

N a 1 . « 9 , = LS4~ 4




R W. Barnard et al. / Application from partial sums of e*
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Fig. 3. D, and the zeros of P,;(z).

with careful use of the sign of cos 8. Since ,u, /(1 + w) is strictly increasing, it follows that

r(rel—rcosﬂ)m izt lzelmzlm

m(1—rcos §) m(l-Rez)’

Thus, if z,., is a zero of P, then

|1, (z)}| <

0<r=|z|<1, m=1,2,....

m+1

i La(2im) = 1

m!e
from (12), so that (13) gives

L—zp o I m

M7 2y | | 24 €

m!e™(1-Re z;,)

>1.

Therefore, all the zeros of P, lie outside ﬁm for all m > 1, as claimed.
We now determine the point of D,, which is closest to the origin, i.e.,

rmﬁmin{izi: zeﬁm}, m=1,2,....

o N o s e .-y ~
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(14)
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since, by definition, p(¢) satisfies p($) < 1, which implies that 1 — p(¢) cos ¢ = 0. On differen-
tiating (15) as a function of ¢, a straightforward calculation gives that

dp(¢) _ p*(¢) sin ¢[m(1 —p() cos ¢) —1]
dé m(1—p($) cos ¢)° + 1

The definition in (10} implies that cos ¢ < (m —2)/m, showing that the quantity in brackets in
(16) is at least unity for any m > 1. Thus, for z = p($)e® on D, in the open upper half-plane,
i.e., for cos N(m — 2)/m) < ¢ <, the derivative dp(¢}/d¢ in (16) is negative. This estab-
lishes that the point of D, , closest to the origin in the closed upper half-plane, is the
intersection of the arc D,, with the negative real axis, and, as the arc D,, is, from (10), clearly
symmetric about the real axis, the same is true for all of D,,.

Returning to Graham’s question, an a,, affirmatively answering Graham’s question, is
defined by a,, :=r,, where

: (16)

(r el+rm)mﬁ mte™ 1+r,
bii3

rm

. om=1,2,... . 17
g m (17)

We remark that if g is the unique positive constant satisfying ac'*? = 1, so that a = 0.27846. .. ,
then it can be shown from (17) that

alnm aln{\/f?r(Ha)/a}M(}_), I (18)

=a+ +
T 0t aym (L +a)m

We finally show that (18) is sharp in the following sense. It is well known that the partial sum
5,{z) of e” has exactly one negative real zero if # is an odd positive integer, and that it has no
real zeros if n is an even positive integer. If {z,(n)}{_, denotes the set of zeros of s,(z) and if
we write z,(n) = r,(n)e!’™ where |z,(z)| =r(n) and where 0 < }6,(n)| <, then from (11)
we have

nl = ei(nﬂ)e,c(n)f(;k(”)une—u cos 0,{n)g —iu sin Bx(m) du, n=1,2,.... (19)
On taking moduli in (19),

nl< fork(n)u"e_“ s dy, n=1,2,...,
so that

nl< j:k(n)u”e“ du, for any 8, (n) with 0 < |8,(n)| <. (20)

For n odd, say n =21+ 1, let 7,,,, > 0 be such that s,,, (—7,,.,) = 0. From (19) and (20), we
have

Fais QI+1)
(2] 4+ D1 [ 2 gu gy « (9T 20100 4,
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for any zero z,(2/ + 1) with {6,(2!/ + 1)| # w. This shows that, for each odd positive integer m,
the unique negative real zero of P,(z) =s,(mz)} is the closest zero of P,(z) to the origin. In
other words, the very best choice of a,,, for every m = 21+ 1 odd, in Graham’s problem is just
Fpr.1- Now, in [11, II. Abschnitt, Exercise 215], it is shown that 7,,,, satisfies (18), with m
replaced by 2/ + 1. In this sense, the expression in (18), which holds for all integers m, is sharp
and extends, to the case of even integers, the result of [11].
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