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Introduction

This article surveys some of the apen problems and conjectures in complex analysis
that the author has been interested in and worked on over the last several years. They
include problems on polynomials, geometric function theory, and special functions with
a frequent mixture of the three. The problems that will be discussed and the author’s
collaborators associated with each problem are as follows:
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1. Polynomials with nonnegative coeflicients

We first discuss a series of conjectures which have as one of their sources the work
of Rigler, Trimble and Varga in [66]. In [66] these authors considered two earlier papers
by Beauzamy and Enflo [23] and Beauzamy [22], which are connected with polynomials
and the classical Jensen inequality. To describe their results, let

m oo
p(z) =Y a;z’ = a;2', where a; =0, j >m,
=0 =0 -

be a complex polynomial (# 0), let d be a mimber in the interval {0,1}, and let k be a
nonnegative integer. Then (cf [22], [23]) p 15 said to have concentration d of degree at
most k if

k oD
(1) §|‘Ij| >dy |al

J=0

Beauzamy and Enflo showed that there exists a constant é’d,k, depending only on d
and k, such that for any polynomial p satisfying (1), it is true that

1 i« . = .
@ L [ og In(e)1d6 — Log (Z |a,<t) > Cupe
7 Jo : =
In the case of k = 0 in (2) the inequality is equivalent to the Jensen inequality [23],

1 2 ) .
o= [ log lp(e)id8 > log |ao|.

Rigler, etc., in [66] considered the extension of this inequality from the class of
polynomials to the class of H* (c¢f. Duren [36]) functions. For f € H* the functional

NN i NI S (g
T(f) 1= 5= [ 0B A(e*)]d6 ~ log (Z |a31)
can.be well-defined and is finite. They let

(3) Cop =If{J(f): f € H® and f(2) = iajzj(,% 0) satisfies (1)}.

For a (fixed) d € (0,1) and a (fixed) nonnegative integer k, it was shown that there
exists an unique positive integer n (dépendent on d and k) such that

w5 (1) seemn ()

J=0

For this n, set
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n-1
k
i 71 ) -

With these definitions the following conjecture was made in [66].

Conjecture 1. Let Cyy be defined by (3). Then

(4) Cyx = log (("ﬁ”f“)“ﬁﬁ) .

- 1.

P:

In [66] Conjecture 1 was verified for k = 0 and for the subclass of Hurwitz polyno-
mials, i.e., those polynomials with real coefficients and having all their zeros in the left
half-plane. In order to verify the conjecture for the entire class an interim step was sug-
gested. This step was one of the motivations for the following problem which was solved
recently by this author and others in {10}, Let p be a real polynomial with nonnegative
coefficients. Can a conjugate pair of zeros be factored from p so that the resulting poly-
nomial still has nonnegative coeficients? We gave an answer to one proposed choice for
factoring out a pair of zeros. Fairly straightforward arguments show that if the degree
of the polynomial is less than 6 then a conjugate pair of zeros of greatest real part can
be factored out and the resulting polynomial will still have non-negative coefficients,
However, the exarmple : :

p(z) = 140 + 20z + 2% + 10002° + 9502* + 52° + 202°

shows that the statement is not true for arbitrary polynomials with non-negative coef-
ficients. A large amount of computer data had suggested the following:

Conjecture 2. The nonnegativeness of the coefficients of a real polynomial is pre-
served upon factoring out a conjugate pair of zeros of smallest positive argument in
absolute value. '

Interestingly this last conjecture also arose quite independently in the work of Brian
Conrey in analytic number theory in his work onr one of Polya's conjectures. Conrey
announced Conjecture 2 at the annual West Coast Number Theory Conference in De-
cember 1987, The conjecture was communicated to this author by the number theorist
Ron Evans. Indeed Evans, using a large amount of computer evidence, has generated a
closely related conjecture which we include.

Conjecture 3. If a polynomial of degree 2n has zeros
glitar) and eiiter)  p =12 ...n,

where the ay lie between 0 and w, then all the coefficients are nondecreasing functions
of t for small t > 0 provided the coefficients are all nonnegative for ¢t = 0.

A special case of Conjecture 3 where the zeros on the upper semicircle are egually
spaced would be of special interest. Althongh Conjecture 2 was verified in [10] the
techniques do not appesar applicable to Conjecture 3.
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2. The center divided difference of polynomials

Another series of polynomial problems was generated in classical number theory by
the work of Evans and Stolarsky in [37]. Given a polynomial p and a real number A
define 65(p), the center divided difference of p, by

T4+ AN —plz— X
6mm={p(+) w=d) L,

2X
p'(z), A=0.

We did a study of the behavior of the &,(p) as a function of A in [11]. A number of
classical results of Walsh and Obrechkoff and of Kuipers [50] give some information
about the zeros of §,(p) as a function of A. Let W(p|] equal the width of the smallest
vertical strip containing the zeros of p. It follows from the classical work that

Wlér(p)) < Wie]

and that the diameter of the zero set of § »(p) approaches co as |\| approaches co. The
Gauss-Lucas theorem shows that

Wip] < Wig].
It was shown in [11] that

(5) W) < WY

and the conditions on p when equality holds in (5) are given. We were also able to prove
that

Wir(p)] = O(1/}) as |A] — oo.
The numerical work done by the number theorists had suggested,

Conjecture 4. W|(6,(p)] monotonically decreases to zero as |A| — co.

In that direction it was shown in [11] that

(6) Wbas(p)] < Wiba(p)]

for all positive A and conditions for equality in (6) were found. In addition, if the zero
set of p is symmetric about a vertical line then

(7) Wsa(p)] =0 for all A > W[p].

However, an example was given of a polynomial p,, that contradicts Conjecture 4 at

least for some A. The polynomial p, has its zero set symmetric about the imaginary

" axis and has the property that for small &, W[&({p:)] = 0 and W[5\(P.)] = 0 for
A2 /142 = Wpl] while W[b:(p.)] > 0 for :

1<A</1+2.



i

Open Problems and Conjectures in Complex Analysis 5

Thus conjecture 4 needs to be modified to read
Conjecture 5. W|[6\(p)] monotonically decreases to zero for A > W{p'].

The original question that motivated the number theorist’s interest in this problem
was the determination of the zeros of éx(py) where

N

pn(2) =TI (—F).

km=—N

Also occuring in their work were the iterates, §( of § defined inductively by
8 (ow) = 867V (o))

with
580(pw) = 6x(pw)-
The numerical work had suggested
Conjecture 6. All nonreal zeros of 6" (py) are purely imaginary for all A and all

Conjecture 6 has been verified in [11] for n = 1. Indeed, an interesting problem, with
other ramifications in number theory, see Stolarsky [71], would be to characterize those
polynomials for which 5§“) has only real and pure imaginary roots.

3. Digital filters and zeros of interpolating polynomials

Some interesting problems arise when classical complex analysis techniques are ap-
plied to digital filter theory. )

Polynomials to be used in interpolation of digital signals are called interpolating
polynomials. These polynomials may require modification to assure convergence of their
reciprocals on the unit circle. Such modifications provide the opportunity to apply
classical analysis theory as was done by the author, Ford, and Wang in [12].

A real function, g, defined for all values of the real independent variable time, ¢, is
called a signal. A digital signal, v, is a real sequence, {7, : —00 < m < 0o}, consisting
of equally spaced values or samples, v, = g{mAt), from the signal, g, with a time
increment or sample interval, At. Thus, the independent variable for digital signals
such as 7 is sample time, mAt, or simply sample number, m.

The signal, g, is studied in terms of its classical Fourier transform, G, as a functlon
of real frequency, w. The digital analog of the Fourier transform consists of the study of
a sequence such as + in terms of its Z-transform, which is defined to be the power series,
T, having 7, as the coeficient of z™. Frequency’s digital analog comes from evaluation
of Z-transforms such as I" on the unit circle with the negative of the 8 in z = ¢ referred
to as frequency. H the coefficients in I' are used without any actual evaluation of I'(z)
or g is used without computation of &, such use is said to be in the time domain. But
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if I'(z) is used with evaluation for some z of unit modulus or G is used, such use is said
to be in the frequency domain.

Signals are based on even functions in a number of applications. This restricts digital
signals to self-inversive cases meaning that I'(z) = I'(z7!) for z # 0. Equivalently, v is
a symmetric sequence meaning that v, = y_,, for all m.

A second signal, f, with Fourier transform, F, poses as a filter of the signal, ¢, if the
convolution integral, g x f, of g and f is considered. Of course, the Fourier transform of
g * f is the product of the Fourier transforms, G of ¢ and F of f. The discrete analogy
consists of the product of Z-transforms, I' and &, where the latter refers to the power
series with the sample, #,, = f(mAt), taken from the filter, f, as the coefficient of z™.

Reduction of certain frequencies is a fundamental aim in the application of a filter,
f, to a function, g. This can involve the definition of f by the requirement that F(w)
be a constant, ¢, for |w| < wy but zero otherwise. If so, ¢ can be chosen so that

(8) f(t) = sinc wet,
where sinc is defined by

(9) sine ¢ = ——

These equations illustrate that the definition of a real signal is determined from the
specifications of its Fourier transform. Similarly, digital signals are often defined by the
specification of Z-transforms.

The Fourier transform, F, of the f in (8) is referred to as a frequency window since
it has compact support in frequency. Application of such a window to a signal, g, is
known as a frequency windowing. These problems concern discrete time windowing.
This consists of the scaled truncation of an infinite sequence such as v to obtain a finite
sequence of the form {c¢nym : —L < m < L} wherein the finite sequence, {¢,, : —L <
m < L}, is referred to as a time window, '

Suppose a given digital signal, {8 : ~oc < k < oo}, is such that b is understood
to correspond to the time, kN At, with the sample interval, N At, where N is a natural
number such that ¥ > 1. If this digital signal is to be compared with digital signals
based on the smaller sample interval, Af, the given digital signal must be interpolated to
the smaller sample interval, At. For example, insertion of N — 1 zeros between every by
and b1, followed by multiplication of the Z-transform of the result by the interpolating
series, Py, defined by

(10) Pu(z) =1+ 3 (2™ +2"™) sinc %ﬂ,
m=1 .
leads to
(11) Alz)y= D au2" = ( 5 bjsz) Py(z).
nE—0o j=—00 |

Since the coefficient of z*¥,ain, in A comes from products of b; and sinc(mn/N) such -
that kN = jN £ m, it follows that m = 0 (modN), sinc(m=/N)=0 for nonzero m, and
agn = bg. Thus, A is an interpolation of the given B with coefficients, b;.
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A major goal is to study possible alternatives to the interpolation used in (10) in
terms of truncation of the interpolating series in (11). In practice one truncates P to
obtain the interpolating polynomial, Py s, defined by

L-1
(12) Py p(z) =zt (1 + 3 (z™ 4 27"} sinc Tﬁz) ,
- m=1
where N > 1.

To assure stability and accuracy of evaluation it is important that alternative P’s
have no zeros on the unit circle. It is shown in [12] that all of the zeros of Py are
of unit modulus when L < N and examples are given showing that when L > N + 1
almost any combination of zeros inside, on, and outside the unit circle can occur. A
number of classical results are then combined to give sharp conditions on real sequences
{em 1 1 € m < oo} so that the function P} ; defined by

L-1

(13) Pr(z) =201 [14 30 (2™ + 27 e sine T"T

m=1

has no zero of unit modulus. In particular, in order to define a useful test to determine
if a specific sequence of numbers will work for the ¢,.’s in (13) the following theorem
was proved in [12].

Theorem 1. If a real sequence, {by : 0 < m < L, by = 1} is such that

1 & b1 b

b, 1 _ by --- be_1

: =0
bk—l . bl 1 bl

by by --- by 1

for0< k< L, let
2log L\™
m = bm 1—
o =in 1-25)

define the coeficients in (13). Then P ;, has no zero of unit modulus.

A number of the standard “windows” that occur in the engineering literature are
then shown to be just special cases of those defined in Theorem 1, including the very
generalized Hamming window and the Hanning window. (see Rabniner and Gold’s book,
Theory and Application of Digital Signal Processing.) '

The distribution of zeros and the orthogonality property of the sinc functmns deter-
mine the interpolating properties in (11) and enables the classical results to be applied.
Thus one can ask, can the sinc functions be replaced by more general orthogonal fun-
ctions, e.g., Jacobi polynomials, to create a more general setting in which many more
applications can be found? Discussions with several engineers have suggested this.




4. Omitted values problems

We now discuss a number of open problems in geometric function theory. Let
A, = {z:|z| < r}, with 4, = A.

Let S denote the class of univalent functions f in A normalized by f(0) = 0 and
F(0) = 1. The problem of omitted values was first posed by Goodman [38] in 1949,
restated by MacGregor [57] in his survey article in 1972, then reposed in a more general
setting by Brannan [5] in 1977, It also appears in Bernardi’s survey article [24] and has
appeared in several open problem sets since then including [27],[40] and [60].

For a function f in 5, let A(f) denote the Lebesgne measure of the set A\ f(A) and
let L(f,r) denote the Lebesgue measure of the set {A\f(A)}N{w : lw! = r} for some
fixed r,0 < r < 1. Two explicit problems posed by Goodman and by Brannan were to
determine :

(14) _ A =sup A(f),
and
(15) L(r) =§;,£ L{f,r).

Goodman [38] showed that .22r < A < .50m. The lower bound which he obtained
was generated by a domain of the type shown in Figure 1.

Figure 1

Later, Goodman and Reich [39] gave an improved upper bound of .38x for A. Using
variational methods developed by the author in [6] and some deep results of Alt and.
Caffarelli (4] in partial differential equations for free boundary problems, a geometric
description for an extremal function for A was given by the author in [9] and by Lewis
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in [54]. This can be described as follows: There is an fo in § with 4 = A(fo) such
that fo(A) is circularly symmetric with respect to the positive real axis, i.e., it has the
property that for 0 < r < 1,

9 i6 o -if
55|fg(re )| and 89|f0(re <0, for0<d<m

(cf. Hayman [44]). Moreover the boundary of fo(A) consists of the negative real axis up
to —1, an arc 7 of the unit circle that is symmetric about —1 and an arc A lying in A,
except for its endpoints. The arc A is symmetric about the reals, connects the endpoints
of 4 and has monotonically decreasing modulus in the closure of the upper half disc.
These results follow by standard symmetrization methods. Much deeper methods are
needed to show (as in [9] and in [54]) that f has a piecewise analytic extension to A with
f4 continuous on f3{(A) and |fi(fo{w))] = ¢ < 1 for all w € AN{A\(~1,1)}. Using
these properties of f, it was shown by the author and Pearce in {19] that by “rounding
the corners” in certain gearlike domains a close approximation to the extremal function
could be obtained. This gives the best known lower bound of

241 < A.

The upper bound is conceptually harder since it requires an estimate on the omitted
area of each function in S. Indeed, it appears difficult to use the geometric description
of fo to calculate A directly. However, an indirect proof was used by the author and
Lewis in [17] to obtain the best known upper bound of

A< 3l1r.

Open problem. Show that f, is unique and determine A explicitly.

For the class §* of functions in § whose images are starlike with respect to the origin,
the problem of determining the corresponding

A" = sup A(f)
fess

has been completely solved by Lewis in [54]. The extremal function f; € 5* defined by
A= A(f) = 2856w

is unique (up to rotation). The boundary of fi(A) has two radial rays projecting into
A with their end points connected by an arc A; that is symmetric about the reals and
has |f1({)] = ¢ for all ¢ € fi (M)

The problem of determining L(r) in'(15) was solved by Jenkins in [47] where he
proved that for a fixed r,1/4 < r < 1,

L(r) = 2r arccos(8+/r — 8r —_1).

The extremal domain in this case is the circular symmetric domain (unique up to rota-
tion) having as its boundary the negative reals up to —r and a single arc of {w : |w| = r}
symmetric about the point —r. '
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The corresponding problem for starlike functions of determining L*(r) = sup;cg.
L(f,r) was solved by Lewandowski in [53] and by J. Stankiewicz in [70]. The extremal
domain in that case is the circularly symmetric domain (unigue up to rotation) having
as its boundary two radial rays and the single arc of {w : |w| = r} connecting their
endpoints. An explicit formula for the mapping funection in this case was first given by
Suffridge in [72].

For the class 5¢ of functions in § whose images are convex domains the corresponding
problem of determining

(16) Af(r) = sup A{f,r)
fese

and

(17) L¥r)y = ?EI‘E)CL(T,U).

where A(f,r) denotes the Lebesgue measure of A,/f(A), presents some interesting
difficulties. One particular difficulty is that the basic tool of circular symmetrization
used in the solution to each of the previous determinations is no longer useful. The
example of starting with the convex domain bounded by a square shows that convexity
is not always preserved under circular symmetrization. However, Steiner symmetrization
(cf. Hayman [44]) can still be used in certain cases such as sectors. Another difficulty is
the introduction of distinctly different extremal domains for different ranges of r. Since
every function in 5° covers a disk of radius 1/2 {cf. Duren [36]} r needs only to be
considered in the interval (1/2,1). Waniurski has obtained some partial results in [74].
He defined ry and 7, to be the unique solutions to certain transcendental equations where
r1 & .59¢ and ry & .673. If F,/; is the map of A onto the half plane {w : Rew > —1/2}

and F, maps A onto the sector
T
arg (w—i— —-—)' < a}
doa

(o

whose vertex, v = —x/4a, is located inside the disk, then

A(r) = A(Fpp,r)for1/2<r <ry,
Li(r) = L(Fpp,r)for1/2 <r <y,

and -
L(r) = L{(F,,r) for ry <r <71y

This author had announced in his survey talk on open problems in complex analysis
at the 1985 Symposium on the Occasion of the Proof of the Bieberbach Conjecture the
foﬂowing conjecture:

Conjecture 7. The extremal domains in determining A°(r} and L°(r) will be half-
planes, symmetric sectors and domains bounded by singles arcs of |w| = r along with -
tangent lines to the endpoints of these arcs, the different domains depending on different
ranges of r in (1/2,1). ‘
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This conjecture was alse made independently by Waniurski at the end of his paper
[74] in 1987.

Another conjecture that was announced at the Symposium on the Proof of the Bie-
berbach Conjecture arose out of this author and Pearce’s work on the omitted values
problem. A significant part of characterizing the extremal domains for A%(r) and L¢(r)
in (16) and (17) via the variational method developed in [6] would be the verification
of the following:

Conjecture 8. If f € 5° then

1 g2 1
1 lim - /
( 8) r!-ﬂ 27 Jo

Fre?)

d8 < sup
zEA

f(=)

Using standard integral means notation this is equivalent to showing that the smal-
lest ¢ such that

(19) My [1/f] € eMos [2/ f(2)]

holds is ¢ = 1. Well known results (cf. Duren [36], pp. 214) on integral means show
that the smallest ¢ for all functions in S is two, while unpublished results of the author
and Pearce show that the smallest ¢ for the class of functions starlike of order 1/2 [cf
Goodman [40]} (a slightly larger class than 5°) is ¢ = 4/7. It was also shown that equality
bolds in (18) for all domains bounded by regular polygons and it was conjectured that
equality holds for those convex domains bounded by single arcs of {w : |w] = r} and
tangent lines at the endpoints of these arcs. Verification of Conjecture 8 would give
an interesting geometric inequality. Let a convex curve I” have length L and have its
minimum distance from the origin be denoted by d. An application of the isoperimetric
inequality along with the conjecture would imply

2dw 1 /” df L

(20) T Varh [ S 2

We note that the normalization for the functions f in §¢ would force the first and last
terms in inequality (20) to go to one as d goes to one.

" Determining explicit values for A°(r) and L°(r) would involve computing the map
that takes A onto the convex domains bounded by an arc of {w : |w| = r} along
with the two tangent lines at the endpoints of this arc. The function defining this map
involves the quotient of two hypergeometric functions (cf. Nehari, [62]). In particular
an extensive verification shows that the function ¢ as shown in Figure 2

o,

Figure 2
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is given by 0 L %043
ZQFi( a4 5%11""'0{;2)
9(z) = Ja+1 8- 2a :
oF (T S )

A difficulty arises when determining the explicit preimage of the center of the circle so
that ¢ can be renormalized to the mapping function f in S taking A onto a domain
whose boundary circle is centered at the origin.

5. Mobius transformations of convex mappings

Another problem on convex mappings originated from a question of J. Clunie and

T. Sheil-Small. If f € § and w ¢ f(A), then the function
(21) F=f1(0~flw)

belongs again to S. The transformation f — £ is important in the study of geometric
function theory. It is useful in the proofs of both elementary and not so elementary
properties of 5.

If Fis a subset of S, let

F={f:feFwecC\f(a)}

Here C* = CJ{co}. Since we admit w = oo, it is clear that F C F C §.

If F is compact in the topology of locally uniform convergence, then so is F. If F is
rotationally invariant, that is, fo(z) = e f(e~"z) belongs to F whenever f does, then
Fis also rota,tlonally invariant. It is an interesting question to ask which propert1es of
F are inherited by F. Since § = S, this question is trivial for S.

In [20] and [21] the author and Schober considered the class S¢ of convex mappings.
Simple examples show that 5¢ is strictly larger than $°. Since the coefficients of functions
in S¢ are uniformly bounded (by one), J. Clunie and T. Sheil-Small had asked whether
the coefficients of functions in 5¢ have a uniform bound. The affirmative solution of this
problem was given by R.R. Hall [42]. '

Open Question. Find the best uniform bound as well as the individual coefficient
bounds for 5°.

In {20] the variational procedure developed in [17] is applied to a class of extre-
mal problems for §¢. i X : §° — H is a continuous functional that satisfies certain
admissibility criteria, it was shown that the problem

max A
gc
has a relatively elementary extremal function f. More specifically, it was shown that f .
either is a half-plane mapping f(z) = z[ {1 — €2) or is generated through (21) by a
parallel strip mapping f € 5%
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The class of functionals considered in [20] contain the second-coefficient functional
M f) = Re a; and the functionals M f) = Re &(log f(z)/z) where & is entire and 2 is
fixed. The latter functionals include the problems of maximum and minimum modulus
(#(w) = £w). In general, the extremal strip domains f(A) need not be symimetric
about the origin. This adds a nontrivial and interesting character to the problems.

A sharp estimate for the second coeflicient of functions in §¢ is given explicitly in
the following result. Surprisingly, the answer is not an obvious cne.

Theorem 2. If f(z) = z + ay2% + - - - belongs to 5°, then
2 .
lag| < S sinZo — cos T A 1.3270
0

where zo = 2.0816 is the unique solution of the equation

; 1
=Z_
cotr=——7

in the interval (0, 7). Equality occurs for the functions e f(e®2), o € R, where flzy=
F(2) L = f(2)/ f(1)] and f is the vertical strip mapping defined by

1 1+ eitoy
0 —.
2i sin xg & 14 e-izoz

(22) fz) =

We make the following:

Conjecture 9. The extremal functions for maximizing |a,| over $¢ are the vertical
strip mappings defined by (22) where a different z, is needed for each n.

In [21] the Koebe disk, radius of convexity, and sharp estimates for the coefficient
functional |tas + a2|, for t in a certain interval, were found for functions in the class 5¢
Also, in [3], R.M. Ali found sharp upper and lower bounds for |f(z)| for f in 5°.

6. Robinson’s 1/2 conjecture

A’ conjecture that has been open for more than 4( years is Robinson’s 1/2 conjecture.
Let A denote the class of analytic functions on A. For a subclass X (possibly a singleton)
of A let rs(X) denote the minimum radius of univalence over all functions f in X.

For a function f in S define the operator @:5—-Aby

Of = () /2.

In 1947, in [67], R. Robinson considered the problem of determining rs[@(5)] which will
be denoted by ro. He observed that for each f in S, [2f] # 0 for Ay, and noted that
for the Koebe function, k, k(z) = z(1 — z)7%,

rs(k) = rge (k) = 1/2
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which implies ro < 1/2. Robinson made

Conjecture 10. If f € S then (zf)/2 is univalent in A, for 0 < r < 1/2, ie.
o= 1/2

He was able to show that .38 < rs.[@(S)] < re. Little or no progress was made
directly on the study of the operator @ following Robinson’s work until Livingston in
[56] proposed a shift for the setting of the problem from the full class S to subclasses
of S. He showed that @ preserved many of the well-known subclasses of S. e.g., $* and
§¢. Livingston’s work renewed interest in the study of €. Numerous papers by various
authors followed (see [13]) connecting the operator @ to various subclasses of §. It was
shown by the author and Kellogg in [13] that most of these results follow directly from
the Ruscheweyh-Sheil-Small theory on Hadamard convelutions. However, for the entire
class S, if appears that the easily obtained lower bound of approximately .41 is the most
that can be obtained from the convolution methods. Thus Conjecture 10 is stiil open.
Although Bernardi had suggested that rg.[©(S)] = 1/2 might even be true, in [7], it
was shown that rs.[0(S)] < .445, while Pearce proved in [64] that .435 < rg[O(S)].
In [8] the author proved that .490 < ro < .50 using the Grunsky inequalities. The
closeness, but non sharpness, of this result has intrigued a number of people in the field.
Robinson’s conjecture and the progress on this problem appeared in A. W. Goodman’s
book, Univelent Functions [40], and in [27].

7. Campbell’s conjecture on a majorization- subordination
result

A conjecture relating majorization and subordination was made by Campbell in [34].
Let f, F, and w be analytic in A,. f is said to be majorized by F, denoted by f < F,
in A, if |f(2)] € |F{2)] in 4,. f is said to be subordinate to F, denoted by f < F, in

A, if f(2) = F(w(z)) where [w(z)| £ |z| in A,.

Majorization-subordination theory began with Biernacki who showed in 1936 that
if f/{0) 2 0and f < F(F € §)in A4, then f « F in Ay In the succeeding years
Goluzin, Tac Shah, Lewandowski and MacGregor examined various related problems
(for greater detail see [33]).

In 1951 Goluzin showed that if f/(0) 2 0 and f < F(F € 5) then f' < F' in Aps.
He conjectured that majorization would always occur for |2| < 3 — +/8 and this was
proved by Tac Shah in 1958.

In a series of papers [32,33,34], D. Campbell extended a number of the results to
the class U, of all normalized locally univalent (f'(z) # 0) analytic functions in A with
order € « where U; = §° the class of convex functions in §. In particular in [34] he
showed that if f(0) = 0 and f < F(F € U,) then f' < F'in |z < @+ 1 — (a? + 2a)}/?
for 1.65 £ a < oo where o = 2 yields 3 — /8. Note-that o = 1 yields 2 — /3, the
radius of convexity for §. Campbell’s proof breaks down for 1 £ a < 1.65 because of .
two different bounds being used for the Schwarz function with different ranges of a.
Nevertheless, he made the following: ‘




Open Problems and Conjectures in Complex Analysis 15

Conjecture 11. If f(0) > 0 and f < F (F € U,) then f' < F' for |z| < a+ 1~
(a? + 2a)1/2, _
In [14] the author and Kellogg combined Ruscheweyh’s subordination result [68],

variational methods, and some tedious computations to verify the conjecture for « = 1,
i.e., it is shown that if f/(0) 2 0 and f < F(F € §°)in A then f < F' for |z| < 2— /3.

8. Krzyz’s conjecture for bounded nonvanishing functions

Another conjecture that has been investigated by a large number of function theorists
is Krzyz's conjecture. Let B denote the class of functions defined by f(#) = ag + a1z +
o4 ayz™ + -+ for which 0 < |f(z)| < 1for z € A. In 1968 in [49] J. Krzyz posed the
fundamental problem of determining for n > 1

A, = sup|an|.
feB

That A; = 2/e dates back to 1932 (see Levin [51]) and appears explicitly in Hummel,
etc. [46) and Horowitz [45}. That 4; = 2/e appears in [46] and A3 = 2/e in [65]. For
a fairly complete history of this problem see [46] or Brown [31]. These results suggest
what has become known as the Krzyz Conjecture,

Conjecture 12. 4, = 2/e, for all n > 1, , with equality only for the functions

2?1.
=—+4—-z"+---
AR S e €

K. (z) =exp [Zﬂ + 1] !

and its rotations e K,(ez).

A, is to equal the apocryphal Pondiczery constant, named by Boas in [25]. A sharp
uniform bound less than one is expected. However, the bound 2/e =~ .7357---, is so-
mewhat surprising in view of the fact that the best uniform estimate known to date

15
1 4. /1
d<1——+Zsin{—)=0. ...
lan] < 1 3ﬂ_+ﬂ_sm(12) 0.999877

given by D. Horovitz in 1978 in [45]. :

The open problem of Krzyz's Conjecture is stated in A. Goodman's book “Univalent
Functions” [40, page 83]. De Branges’ recent solution to the Bieberbach Conjecture gave
hope to solving many of these type problems. However, not withstanding the amount
of effort by several function theorists to solve the corresponding coefficient problem,
Conjecture 12 still remains open.

A related conjecture made by Ruscheweyh upon verification would give a much
improved uniform estimate for A,. Consider f(z) = exp[—Ap(z)] for A > O andpe P
where

P={p:pz)=1+pmzt- - Rep(z) >0, ]z < 1}
Then consider the following: For 0 < r < L, choose & = z(r) such that
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. =7 (Jo,Jy are Bessel Functions)
Jo (zw 13’;2)
and define
. B
(23) R = e R g (e )

Ruscheweyh conjectured that for any positiveinteger n, Ay > 0, |&| = 1,k =1,2,---,
n and
L 1+ ka)
p(z) = m@—~,
2P il e
Conjecture 13.

27T : R
o [ R Re p(re )} dip < F (57,

(24) 2m Jo

with F' defined in (23).

We have shown by using the Legendre polynomial expansion for Bessel functions
that

—zRe +rtetny L INP _9;1:‘:7'2“ . 7
(25) _.f B { r“e""“’}R {H—L} d(p =e 1-7"J4 (Z.’E 2r ) .

1 — rreing 1—rin

Equation (25) shows that the estimate (24) would be sharp for fixed » for  defined
by

142z
Blz) = 20"
Upon verification of Conjecture 13 it can be shown that
2 F(r®)
2 —_— .
(26) lan| nrn-l(l ),0<'r<1

Choosing r? = (n — 1)/(n + 1) in (26) it would follow that

: kf2
@) o] < Jim z%())—i —eF (é) ~ 869
sy 1

by numerical calculations.

9. A conjecture for bounded starlike functions

A conjecture that was made by this author in [6] in 1975 was recently disproved with
computer methods by Pearce leaving the problem now as one that probably can only
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be done numerically. The conjecture involved coefficient estimates for bounded starlike
functions in 5. Define, for a fixed M > 1,

Su={feS: f(z) =z +me? +asz®+,|f(z)| < M,z € A}.

The fact that |a,| is maximized in Sy by the function mapping onto Pick’s domain of
the disk Aj minus a single radial slit has been known since 1917 [see Goodman, vol. 1,
p.38]. In the early sixties Tammi [73] used Schiffer’s variational methods to determine the
explicit extremal domains for maximizing the first few coeflicients in Sys. In particular
he proved that the extremal domains for maximizing |as| in Sy are as shown in Figure
3 for the different values of M. :

l<M<e : e< M <

Figure 3

There is a difficulty in modifying Schiffer’s variational methods to allow for preser-
vation of both boundedness and starlikeness at the same time. Also the fact that the
forked slit domains occurring for M > 3 are no longer starlike suggested the need for
a local variational technique that preserved these properties. This was developed by
combining the Julia Variational formula with the Loewner Theory in [6] and in [17]. Let

Sy =1{f € Su: f(Q) is starlike with respect to the origin}.

It was shown in [6] that the extremal domain maximizing |as{ in S}, is the disc Ay
minus at most two syminetric radial slits. Define Dys as Aps minus two symmetric radial
slits where 26 is the angle between the 2 slits. Let A3(M, 6) be the third coeflicient for
the function in S}, mapping A onto the domain Dys.

From the properties of the extremal domains in the class Sur, along with initial
computations and the observation that A3(3,0) = As(3,7/2) = 8/9 led this author to
the following:

Conjecture 14. For all f € 53,

(28) las} < As(M,7/2), 1< M <3,
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(29) |G,3| < A3(M, 0), 3 < M < oo,

It follows from Tammi’s results that (28) holds for 1 < M < e and it was shown by
the author and Lewis in [16] that (29) holds for 5 < M < oc. Verifying Conjecture 14
for e < M < 5 remained an open problem. This conjecture was announced at the 1978
Brockport Conference and appeared in the open problem set in the proceedings [60] for
that conference. It was announced by J. Lewis at the 1980 Canterbury Conference and
appeared in the open problem set in its proceedings, [27]. It was also announced at the
1985 Sympesium on the Proof of the Bigberboch Conjecture.

Motivated by the observation that the domain Dy is indeed a “gearlike” domain
and now having the computer software available, Pearce was able to compute 43(3,6)
and discovered that A3(3,0), as a function of 8 from 0 to #/2, was convex downward,
1.e., it took its minimum at the endpoints.

Thus Conjecture 14 was false. Indeed further computations shows that there exists
a 8(M),0 < 8(M) < =/2, such that, for some My > 0,

max [A3(M, 0), Az(M, % [2)} < Az(M, (M)

for 2.83 < M < My < 5.

10. A. Schild’s 2/3 conjecture

Another long standing conjecture that was proved false was the 2/3 conjecture. Let
r1 = ry{f) be the radius of convexity of f, i.e. m(f) = sup{r : f(A,} is a convex
domain}. Put d* = min{|f(z)| : |2| = r1} and d = inf || for which f(z) # 8. In 1953 in
[69], A. Schild conjectured that d*/d > 2/3 for all functions f € $*. Here equality holds
for the Koebe function k(z) = z(1 + z)~?. Schild noted that d*/d > r; > 2 — /3 and
proved the conjecture for p symmetric functions, p > 7. He also showed for a certain
class of circularly symmetric functions that d*/d > .49. Lewandowski in [32], proved the
conjecture true for certain subclass of §*. In {58}, McCarty and Tepper obtained the
best known lower bound of .38 for all starlike functions. The conjecture was shown false
by the author and Lewis in {15] by giving two explicit counter examples.

The first example is given simply by the two slit map defined by

' z
f(z) - (:!- . Z)a(l 4 Z)Z—cx H
where « is sufficiently near 0. It was noted that if d is computed as a function of «,
then o/(d} — +o0o0 as @ — 0 so that a minimal value of .656 for d*/d was obtained for
this function at a = .03.

The second example is a more complicated function that maps A onto the circularly
symmetric domain shown in Figure 4. '
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Figure 4
An explicit formula for this function g,, determined by Suffridge in [72], is given by

/2
ga{z) 14+ 2az +22\" 142 1
log = "25103{[( 1—2) RS rwr

2
[(1+2az+zz)1/2+1—§—z] ,

+2log

where a == 25 — 1 and d = [(1 + by He(1 — b)“b} ™ with Y = w(1 — b). A close appro-
ximation to the minimum of d*/d for this function is 0.644 given by ¢ = 0.89. Also
% &5 .03 for this minimum value. The author’s work suggests:

Conjecture 15.
f1é15i"' d*/d = min {d*/d for g,} ~ .644 - .-

4

11. Brannan’s coefficient conjecture for certain power series

An innocent looking, but not so trivial, conjecture was made by Brannan in 1973
in [26] on the coefficients of a specific power series. The problem originated in the
Brannan, Clunie, Kirwan paper (28] (later completed by a Aharanov and Friedland in
[1}) solving the coefficient problem for functions of bounded boundary rotation. Consider
the coefficients in the expansion '

CEL - 5 49, Jal=1,a> 0,8 >0

n=0

Brannan posed the problem as to when

(30) |459(2)] < 4l (1),
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He gave a short elegant proof that (30) held if # = 1 and a > 1. However, he showed
that for 8 = 1,0 < a < 1, (30) did not hold for the even coefficients and that for z = €%,
{30) held for odd coefficients in a sufficiently small neighborhood of & == 0. He also noted
that for 0 < a = 8 < 1,]A5*)(z)] < 45*)(1). By using the expansion

Ay = BUEED - BEn=D) g o1 pi-a)

n!

and the properties of 2 Fy, the hypergeometric function, this author has shown that

(i) (30) holds for @ < 3,4+ a > 1 and |A «f) )| < ALPN1) for |z| = 1,z # 1 and
n=1,213,.

(ii) |A§‘;}r)1(z)| < AP, =1,23,  for 0 <a<atel—8<a<lfred
sufficiently small and positive, and o

(i) AP N z) < AP, 0<a< g < 1.

In [61], D. Moak has shown that (30) holds for a > 1, > 1. Milcetich, in [59], has
recently shown that (30) holds for n = 5,8 = 1 and 2 < @ < n but does not hold for
non integer a’s less than n — 1, 5 near zero, for odd n > 3. The basic

Conjecture 16. |A§ii)1(:c)| < A{,’;_}_)I(l)

is still open.

12. Polynomial approximations using a differential equation
model '

Another conjecture on special functions arose out of the author’s and L. Reichel’s
work on polynomial approximations using a differential equation model. Given equidi-
stant data (w;,y) with z; = 1 — (20 — 1)/ M, the problem is to best fit a polynomial of
given degree N — 1 to M data points. A comparison is used between the discrete norm
|| ip, defined by

1 M
g _ L A2
115 = 37 3 1F(e:)
and the continuous norm, || - ||, defined by
Iflle = —maX|f(ff

Gram polynomials {¢;} are used where they are orthonormal in the discrete nortm
with an expansion for p given by

p) = Y aspi(z),

so that ||p||h = ¥ a?. These are defined recursively by
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(31) en(z) = 2zan-19N-1 — (an-1/an-2) pN-2(T),

where
M (N2 - 1/4)“’2

AN =N\ N2

The asymptotics as M and N — oo are studied by letting 7 = N/v/M and z =
1 — (/M. Then the recurrence relation in (31) can be used to obtain

on = o1+ pnoy = 12— (1/47%) — 2] w /M + o(1).

This in turn can be used to obtain the differential equation model:
(32) o(t) = [ - (1/4%) - 2] 9 (8),

where t = 7 — 1/+/2M and the initial condition as ¢ — 0 is defined by
o (L= (/M) = V2VMVE+ 01/ M),

ie., p(t) = VHt — 0). A normalization is made by (t) ~ ¢,/\/2vM where ( is an
odd positive integer if and only if # is a grid point. The sclution to (32) is given by

p(t) =270 | Ry (—1 5 C,l;tz) ,

where ; F is Kummer’s confluent hypergeometric function (see Gradshteyn and Ryzhik
[41]). ,

To find error estimates for least square approximates by these polynomials an ap-
plication of Brass's result in [29] can be used that gives error estimates for least square
norms In terms of the uniform sup norm. But in order to apply this result all the
on(1 — (/M)’s must have their sup norms occur at the right end point of the interval
{~1,1]. An extensive computer analysis suggested that this does occur. What is needed
then is to verify ‘

Conjecture 17. For all ( > 0 and real t we have

1B (1'2'—4,1,#) < 1R (1/2,1,1).

Indeed, by converting to the Whittaker functions M, ,(z) see [41], for a more con-
venient range of variables the conjecture is equivalent to showing that

Meo(z) € Mpo(z) forall k >0andz > 0.

‘We have verified Conjecture 17 for the regions dotted in Figure 5.
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Figure 5
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