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THE OMITTED AREA PROBLEM FOR UNIVALENT FUNCTIONS

Roger W. Barnard

Let U= {z: [z] <1} and S = {f:f analytic and 1-1 4in U, f(z) =
z 4 ---}. The omitted area problem was first posed by A. Goodman [7] in 1949,
reiterated by 7. MacGregor [10] in his survey article in 1972, then reposed in
a much more general setting by D. Brannan [1]. It appears in Bernardi's survey
article in [3) and in a few open problem sets since then (111, {5]. The prob-
lem is to find the maximum area of the intersection of the unit disk with the
compiement of f(U) as f varies over the family S. If f 4isin S, let A
be the area of Un f(4) (so T «-Af is the omitted area). Further let
A% = inflA: f €S Goodman (7] showed that 50w < AC < .77x and Goodman
and Reich [8] improved this result to .62r < 20 < .71m.  Goodman's upper bound
was obtained by computing the value of Af where f(U) 1s shown in Figure 1.

The two arcs are circular arcs with the inside arc chosen to maximize A
for f in S.

.F

-F .

VAR
|

Figure-1

1980 Mathematics Classification Number 30C35 :
© 1985 American Mathematical Society
G271-4132/85 $1.00 + §.25 per page



54 ROGER W. BARNARD

In this paper we use symmetrization and subordination techniques, the Julia
Variational Formula, and results on the boundary behavior of the derivative of
the mapping function to prove the following result:

THEQREM. Let Af = area of f(U)nU for f in 5 ‘and AO = inf{Af:
fes), If Afo = AO, then fO(U) is circularly symmetric and has as 1ts

boundary {up to rotation} the negative reals up to -1, and arc A of the 8l
that is symmetric about -1 and an arc v, symmetric about the reals, lying in
U and connecting the endpoints of A, IF afD(U) is assumed to be a piecewise
analytic curve then for y' =7y N {U-(—1,0)}|zfé(z)l has a constant value ¢,
0<c<l,o0n fa](y') and f' has a continuous extension to an open arc con-
taining the closure of fa](y).

REMARK. We note that v may contain slits along the reals.

PROOF. To assure the existence of an extremal function we observe from the
definition of the kernel in the Carathéodory kernel convergence theory (6] that
Af is a lower semicontinuous functional over the class S, since the area may
have a negative jump in the 1imit but not a positive jump. It follows from the
existence of the minimum for 1.s.c. functions on the compact set S that an

extremal function fO exists, i.e., AO = Af . MWe will use fy to designate
0
the extension of the function to the boundary whenever appropriate. We let

DD = fO{U) denote an extremal domain for this problem.

We now use symmetrization and subordination arguments to show that the aDU
is as claimed. We recall the strict monotonicity property of the conformal
mapping radius, m.r., for sgberdinating domains, i.e., if ‘91 < 02 then m.r,

Dy < m.r.Dz. We alse use the symmetrization principle: 7.e., if D* s ob-
tained from D by circular symmetrization, then m.r.D < m.r.D* with equality
if and only if D* 1s a rigid rotation of D. 1t follows from the definition
of circular symmetrization that the area enclosed by any given circle centered
at the origin is preserved by symmetrization. Let R_1 = {x: x < -1}. Now we
claim that the set C = 8Dy n {z: |z| > 1} must be R4 U XA {up to rotation)
where A 1is some arc of »dU symwetric about -1. Indeed suppose that € %
R_1 Y A, Upon symmetrization of Dﬁ with respect to the positive reals we ob-
tain Da with fa and C* appropriately defined. From the definition of sym-
metrization ¢~C* < ¢*{R_; U A} where 1 is the longest arc of 3l sym-
metric about -1 contained in C*. Thus, the domain B, obtained by replacing
C* by R, ux would have Targer m.r. Let. d; be the point on the negative
reals where fg(e1e) attains its minimum modulus. We could then define an f2
in S corresponding to a domain Dﬁ‘ obtained by inserting a symmetric tear-
drop shaped intrusion {with positive area) into D with 1ts point at d0 with
the intrusion being of sufficient size so that the resulting symmetric domain
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D*2 has m.r. cne. The existence of such a Dg is assured by a continuity
argument noting that Koebe's 1/4 theorem guarantees that if the intrusion gets
closer than 1/4 from the origin the resulting m.r. would then be less than one
while m.r.Df > 1. Thus it follows that A, < A
mal property of fO‘ 0

It follows from the definition of symmetrization that the arc vy of aDD
connecting the endpoints of y 1lies in - U, is symmetric about the reals and a
parametrization of v 1in the upper half plane would have monotonically de-
creasing modulus. We note that although v may contain slits along the reals
it follows from the extremal property of fD that v cannot contain any slits
along arcs of circles centered at the origin., Indeed, if it did, these sTits,
having zero area, could be removed by an argument similar to the one above.

Although the above results will assure that f has a continuous extension
to v, it does not assure any kind of smoothness of vy. We note at this point,
the criticality of this statement. The author has been unable tc overcome the
barrier of having to assume sufficient smoothness of y in order to proceed

£ contradicting the extre-
0 .

with the argument.

REMARK. The author has been notified that John L. Lewis has shown that
the assumption of smoothness of vy 1is unnecessary. Indeed he has shown that
aDO is piecewise analytic with left and right derivatives existing at each
peint. ‘ .
We can then apply the Julia Variational Formula as used and described 1in
detail by the author in his Transactions AMS paper [2] {see also [15]). For"’
e sufficient small and positive we let eo{w) be a normal variation in c2
of the point w on the boundary. The varied function for w = f(z), ¢ = el®
is given up to ofe} {continuity arguments enable us to drop the ofe) term
in the remaining argument) by

2m
oy - ezf'(z) r+z ¢(w)de
f{z) = flz) + o= ‘0 ez Ter ()T Z € u.

If we let y; be the set of smooth arcs where ¢(w} s chosen to be
nonzero, then it follows that the change in area is given by

2| salad = £ [ e et (o)
_ T'E (T])
while the change in m.r. is given by
snee. = [ g Te/1ef ()] 1de.
f (Yi)
Using this one can vary the boundary v by locally pushing in ohe place and
pushing out in another, or vice-versa, in such a way as to preserve the m.r.
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while changing the area under certain conditions. More explicitly, if we let
Wy be a point on y' where for w, = f(c]) = f(e 1), fi{r} exists, is non-
zero, and has nonconstant modulus in a neighborhcod of W along Y1 and if

18
we choose sufficiently small arcs wgw, and wiW, on vy with wy = fle 0)
i9

and W, = fle 2) such that [f'(g)] - [F'{z)], Flz) € wowys f(2) € wqwy, 1s
of constant sign, then the change 1n area would be given by

e e e - g 2 et 128 (2)) 20 M

2r ) TEF(c B 7r j,. 126 (2 .

0 1

Since ¢/|f'| does not change sign in the respective intervals, a mean value
theorem for integrals assures that there exist L3523 with f(c3) € Wy and
f(z3) € WiW, such that the quantity in (1) becomes

¢ 6
o 55t (51 {el ]c_ig%r @ - o 123’0(23}‘2 J‘ﬁz ngwl de.
0 1

Then with the appropriate sign on #{w) this is less than

£ max( | (1) 12,17 (25) [F16m. .

By continuity 60, 82, and ¢ can be chosen so that am.r. = 0. It follows
that if there exists a placg on fO (v') where [zf'(z)] is nonconstant, then
a lecally varied function fO can be defined such that A$ < Af , contradic-
ting the extremal property of fO‘ 7 0 9

We exclude here the possibi?ity_that fo(z) =z since AfO is a maximum,

not minimum, area. Then we observe that v' cannot contain an arc, say B,
of a circle with center at a, or a §traight 1ine. segment, say £. Indeed,
along B it would follow for z = e'® that 8[1og|f0(z)-a|]/ae =
Im(ifé(z)/{fo(z)-a]} =0 and along & that arg zfy(z) would be constant.
These conditions along with izfo( z)| being constant would force

zfé(z)/( (z)-a) and zfy(z) to be constant along B and &, respectively.
Thus, using Privalov's uniqueness theorem [6], f o would be a Mgbjus. transfor-
mation on U, contradicting the extremal property of fO' We rote that the
observations made in this paragraph do not need a priori the assumption of
smoothness on the boundary because the sections of the boundary, if they were
to exist, being circles or straight lines could be varied as described.

We now study the behavior of fb_’on the boundary. It follows from the
Schwarz reflection principle that fé‘ has an analytic extension across the
piecewise analytic boundary of D0 {Bieberbach, 4, pp. 152] with the exception
of a finite number of points where derivatives may not exist. MWe shall study
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the points on Yy where f6 may not be continuous.

We show that f' has a continuous extension to a neighborhood of y. For
the purpose of contradiction, assume vy contains a corner at fO(co) of open-
ing am, for some o, 0<a<1 or 1<a<2 Inthecase ¢>0 it follows
from Lichtenstein's theorem [14] as proved by Warshawski in [14] that for z
in a neighborhood N of g,

dfy(2)/dz = (2 - tg)*" h(2)

where h 1is continuous and nonzerc in N. It follows that §cf6(c)1 cannot
be piecewise constant in a neighborhood of f(:o) along [z| =1 for om,
G<a<2,04 1. Thus vy has no corners of this type even at the endpoints.
The case when o = 0, i.e., when vy has an interior cusp, must be considered
separately because of the utilization of the w1/“ mapping in proofs of
Lichtenstein's theorem. Indeed there exists a function, say g, in S with
|z9'(z)| having two different constant values along the boundary in a neigh~
borhood of a cusp. In particular the function defined by

_[? i 1+¢
g{z) = [O exp{§-1og 1jz&d;

is in S for 8> 2 by Becker's criterion [see 12] and has |zg'(z)] = o7/28
for ¢ in a neighborhood of 1 along |z| = 1. We note that the phencmenan
occurring here is that the boundary of g(U) spirals into a cusp.

We will now show that if a cusp were to exist on v then the angular
derivative of the function would have to approach infinity. We then show that
the conditions obtained for y will not let this happen. We need the Cara-
théodory-Lelong-Ferrand result on angular derivatives. A function ¥ analytic
in U has the angular derivative a at e st if f'(z)+a as z -+, :
z € A for every Stolz angle A at . Then C-L-F [12] proved the following:

THEOREM A. Let f and g be analytic and univalent in U and Tet
f(U) « g(U). Let there exist a Jordan.arc T ending at r € sl such that

o{z) = g'1tf(z)) +r .as 2-+7, ZET.

If f'(z) exists and is finite, then -g'(z) exists and £'(g) = 0 implies
g'(g) = 0.
REMARK. Since the proof uses the computation, assuming that ¢ = 1,

el ot S0 gy (o1

where 0 < 8 <=, it follows that under the conditions of the hypothesis if
g'(z) >= then f'(z) += as z-+¢ along I. -
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To apply Theorem A we need to prescribe the Jordan arc T and a super-
ordinating function g with the appropriate properties. Since vy has ‘
strictly monotonically decreasing modulus, if we let Yy be an arc of { w:
|w} = lfo Lo 1} lying inside fO(U) ending at fo(qo), then we can let
.= fO ) From the circular symmetry of DO and thus the geometry of v
and Yy» there exist two sufficiently short straight line segments, %y, %5,
lying in U\fO(U) ending at fo(;o) _and forming a corner of opening em,
0<g<1. (We note that if y could spiral the existence of 2, and 1,
could not be assured.) From the simple connectivity of fO(U) 1 and %,
can be connected to the point -1 by two curves 3,3, lying.in U\fO(U) 50
that {x: x < -1} v Ao 12 U L] U bounds a simply connected domain @
with corresponding mapping function g such that g{i) = oo fO(U). Since &,
and L, are straight line segments it is clear that g'(z) »= as z-+1,

z €T. It follows from the remark following Theorem A that f would have an
infinite angular derivative at an interior cusp on .

To show that the condition obtained for vy would not allow for a cusp,
we use a sequence of classical results. First consider the function ulz) =
Re log fé(z). Since fo is in S there exists an analytic branch of the log
defined for fo so that ufz ) is an harmonic function with its harmonic con-
jugate given by a branch of v{z) = Im log fo( z). Since fa is circularly
symmetric, Jenkin's results in [9] show that zfé(z)/fo(z) and fo define
typically real functions upon renormalization, so that Tlog fé(z) =
log[zfé( )/fo(z)] + 1og[f0(z)/z] has its imaginary part bounded. Thus w(z) =
Im log f'(z) defines a function in hy, 1 < p <=, the class of functions
u{r,8) that are harmonic in U and have IZ” lu(r,8)|Pde <= for O <r <1,

From Riesz! s theorem [6} it follows that since v is in h  for p > 1, its
harmonic conjugate wu 1is in hp for p > 1. Thus, we have by [6], that u
has a Poisson integral representation given by

1 2r )
ufz) = ulr,8) = == [ g(t)P{r,t)dt, 0 <r <1 (2)

for the Poisson kernel P(r,t} where g{t) is a boundary value for u at
each point of continuity of g. However, we have the following result from
Tsuji [13]1, at points of discontinuity of g.

- LEMMA 3. Suppose g is discontinuous at ts, such tgat g(tO +0),

g(t0 - 0} exist. Let £w( 0) be a segment through e 0, making an
it
ang!e_tw(o <y < n) with the positive tangent of |z] =1 at e 0 1r
i it -
z+e 0 along Lw(e 9), then u defined by (2) has the property that

u(z) + glty + 0) + (w/m){glty + 0) = glty - 0)).
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Hence with |zf'(z)! being piecewise constant, the angular derfvative,
although not existing as an explicit 1imit, could not become infinite as z
approached any point on f61(y). Therefore ¥ has no cusps or corners as
claimed, 7

To complete the proof of the theorem we need to find the range for the
constant value c = |zfy(z)| for z € f61(y). We observe from Jenkins' char-
acterization of circularly symmetric functions in [9] that fo(z) =z +
a222 + ... being circularly symmetric assures that g{z) = [zfé(z)/fo(z) -
1J/a, = z + ... defines a typically real function. Thus g¢(z) = {z/(3~22)]/p(z),
where p has positive real part and real coefficients. Since a function that
is circularly symmetric with respect to the positive reals takes its minimum
modutus at z = -r, 0 < r < 1, we have m(-r)fé(-r)/fo(-r) >0 while
[(-P)fé(-r)/fo(-r)— 11 /2, = [-r/(1-r2)1p(-r) < 0. Letting r » 1 we have
that '

zfi(2) -FAC-1)

?Oizj z==1 foi-lj-—
Thus, since Schwarz's Temma assures that |f0(-1)] % 1, we have that for
3 f"](Y) = ¢ = |zfylz)] = |-f4(-1)] < [fp{-1)] <1 and the theorem-is

proved.
This problem has been solved independently by John Lewis using different
methods. .

The author would Tike to thank his colleagues Ted Suffridge, Glenn Schober
and Kent Pearce for their many helpful conversations while writing this paper.
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