ON THE OMITTED AREA PROBLEM

Roger W. Barnard and John L. Lewis

1. Introdaction. Let S denote the class of univalent functions f in A=
{z:|z| <1} with £(0) =0, f'(0)=1. The omitted area problem was first posed by
Goodman [6] in 1949, reiterated by MacGregor [9] in his survey article in 1972,
then reposed in a more general setting by Brannan [1]. It appears in Bernardi’s
survey article [4] and in several open problem sets since then ([5], [10}). The
problem is to find the maximum area of the region omitted from A by f(A) as f
varies over the family S. If we let
(1.1 8 =sup area[A— f(A)],

L fes§
then it is known that

247 =p< 387

The lower bound was recently obtained by Barnard and Pearce [3], who “rounded
the corners” in certain gearlike domains to obtain a close approximation to the
extremal functions suggested by the authors in [2] and {8]. The upper bound is
conceptually harder since it requires an estimate on the omitted area of each func-
tion in S. Thus it is perhaps not surprising that the upper bound of .38 % obtained
by Goodman and Reich {7} in 1955 has not been improved upon over the years.
Unfortunately, it appears difficult to use the geometric description of the extremal
function given in [2] and [8] to calculate 8 directly. However, we use an easily
obtained generalization of the second author’s major result in [8] to obtain the
upper bound 8 < .317 found in Corollary 1 to our Theorem 1.
We first state the result in [8].

THEOREM A. There is an f in S with 3 = area[A— f(A)], where 8 is as in
(1.1), and for which f(A) is circularly symmeiric with respect to the positive real
axis. Moreover, there exist 8, 0,, 0 <8y <6, <7, and a >0 such that if E; =
fe'?:0,<8<2m—0;}, j=0,1, then

F' has a non-zero continuous extension to EgUA which is
Halder-continuous with exponent % on Eg,

SE)=8[/(A)NAI=T, f(e")=e",0<y <, and
af(A) = (—c0, —NU[e?: Yy <fh<2r—y)UT,

(1.4) |fe®)=a, e®cE/~{e®:Im f(e”®)=0],

(1.2)

(1.3)

(e'*: Im f(e'®) = 0] consists of at most a finite number of
arcs or points,

(1.5)
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We remark that the proof of Theorem A in [8] is rather long and complicated.
However, the main thrust of the argument in {8] is to show that a suitable gen-
cralization of the Julia variational formula applies in this case, even though
3f(A)NA is not known @ priori to be smooth. For the reader interested in only
the intuitive idea behind the proof of Theorem A, we note that if the boundary
of the extremal domain is assumed sufficiently smooth, then the key equality
(1.4) follows from using the Julia variational formula as in the proof of (2.1).

Next, for w=u-+iv, we let

(1.6) 6 *Sup HA i |w|~*du dv.

The proof in [8] of Theorem A is easily adapted to prove the following theorem,
THEOREM B. There is an Fin § with

B = HA_F(A) Iw| ™% du dv,

where 3, is as in (1.6), and for which F(A) is circularly symmetric with respect to
the positive real axis. Moreover, there exist 0,8, 0 <y <0, <w, and o> 0 such
that if E; = {e’: ;<8 <2x—0;, j=0,1, then (1.2), (1.3), and (1.5) are valid
with f replaced by F. Also, F satisfies

(1.7 |F'(e”) = a|F(e™)], e"eE,—{e™:Im F(e'®)=0).

In order to modify the proof of Theorem A to obtain Theorem B, essentially
all that is necessary is to replace “area” in the arguments by the “weighted area”
in (1.6). We omit the details. Finally we note that in [8] the analogue of Theo-
rems A and B was obtained for the class §* of starlike univalent functions. In this
case, the extremal function in each theorem is unique and the exact values of 8
and 3, (with § replaced by $*) are known (see [8, Theorems 2 and 3]).

In this paper we use Theorem B to prove the following,

THEOREM 1. Let F be &s in Theorem B. Then F is unique and
B1=(.37...)x.

As mentioned previously, Theorem 1 implies the following.
COROLLARY 1. Let 8 be as in (1.1). Then
8=<.3br.

Theorem 1 will be proved in Section 2. In Section 3 we point out how Corol-
lary 1 can be deduced from Theorem 1.

2. Proof of Theorem 1. Let F be as in Theorem B and put P(z) = zF'(2)/F(z).
Let K =[e’®: Im F(e’®) =0}NE, and K, = E, — K. We first show that X does not
contain an arc I. Indeed, otherwise from an application of the Julia variational
formula in the usual way (see e.g. [2]) and the fact that F is extremal, it would
follow that
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(2.1) Ple)|sa, e’ek.

A sketch of the argument necessary to prove (2.1) is as follows: Let I’ = 3F(A)N A,
and let n(w) be the outer normal to F{A} when w e I" and Im w # 0. Suppose that
MmEKNfz:Imz >0}, vaSKiN{z:Imz>0} are two arcs and put I'y=F(y),
Iy = F(v;}. We note that T'; is an interval on the negative real axis. We regard Iy
as having two sides, a top half (denoted I';") and a bottom half. Let ¢ be a non-
negative infinitely differentiable function in A which vanishes at the endpoints of
Ty, T, If we Ty, we displace I'; at w an amount «(w) in the direction of n{w).
We also displace weT'{" an amount ey(w) in the positive v direction. Suppose the
resulting domain is simply connected and let F be the Riemann mapping func-
tion from A to this domain with £(0) =0, £’(0) > 0. Then from the Julia varia-
tional formula we see that, up to o(e) terms,

ezF'(z) U f+z |ds] “§ t+z || ]

F(z)=F(z)+ . Y(FED Y(F()

v {—2 IF’(K'” v §—2 |F(§—)|
It follows that, up to o(¢) terms, the change in the mapping radius is given by
e jd¢ ]
A= [S VN e =

_ |d¢] ]
[F($)] |[F(5) |
Now the change in the weighted area in (1.6) is, up to o{¢) terms, given by

A2=e“r viv) dwi—jrz T"(VTZ) ]a'w{]

L wf?
F F
) “ ng((sg)i) pePlas|-| T;’((sf))l) Por ldﬂ]

Since |P} =« on v;, we see that if |P| >« on y; then A; > 2ra®Ay. If (2.1) were
false, we could choose ¥, v, y2 so that F exists and A;= 0. Then A, > 0, which
contradicts the extremality of F for sufficiently small € > 0. Thus (2.1) is valid.

To continue the proof that K does not contain an arc I, we next note from
Thecrem B that

(2.2) PAA=f1}) S (~o, 0)U[it: —o <t <o}Uiw: [wi=a}.
Also, from (1.2} it follows that
2.3) 0¢ P(2A—{1}).

Since the winding number of a point with respect to P(dA—[1]) is constant on
components of the complement of P(3A—[1]), it follows from (2.1)-(2.3) that

2.4 "IPl=a on Ej.

In fact, otherwise we could show that P = 0 somewhere in A, which would imply
that F is not univalent. Finally, from (2.4) we deduce that P=ia on I. It then
follows from the identity theorem for amalytic functions that P=ic in A. We
conciude from this contradiction that X contains no arcs. From this statement,
(1.2), and (1.7), we see that (2.4) continues to hold. '
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Next we deduce, from the mapping properties of F in Theorem B, (2.2), (2.4),
and the above remark on winding numbers, that P maps A univalently onto a
domain with

2.5) | PlaA~{1}]=(—o0, —a)U[w: |w|=a]U{tit: t = p},

for some p > a. Using (2.5), we can calculate the explicit form of P either by a
Schwarz-Cristoffel type argument or by recognizing P as a composition of ele-
mentary functions. We prefer the latter method.

Let-1<r<i, M>1, R=2r/(1 +r?), and Im w> 0. In order to obtain some-
what simpler forms and because of their repeated use, we let

My=M/(M~-1), M,=(M-1)/(M+1), M;=(R-M)/(M+1),
W= Jw—M,, Wo= W+ M;, wy=(M+1w+ M,
Ri=~2M-~R+1, Ry=~ 2M-R—-1, R3=~/(1+R)/(1—R).

Here, as in the sequel, x/w+a (2 real, Im w>0) is chosen so that 0 < arg+/w+a =
x/2. Let

Wiw,y

2NM/ (1 4+ My +ifw—1w+1’
We note that ¢ maps (—oo, —1]U[1, ] onto [£: (€| =1, Im£=0}. Also,
[—1, —M) is mapped onio [1, «) while (—M>, M>) is mapped onto a line seg-
ment on the imaginary axis joining a point is, s> 1, to . Finally, (M>,,1] is
mapped onto (—oo, ~1].

Next, put

Imw>0,

o{w)=

27 _
I+¢2
§(@)=(z+r)/(1+rz), |z|<1, Imz>0.

wmﬂ[ M]/(M+l), I€]<1, Im ¢ >0,

(2.6)

We note that w({(z)), {z[ <1, Imz>0, maps the unit upper semidisk uni-
valently onto the upper half-plane in such a way that [—1,1] is mapped onto
[—1, —M,]. Thus

Hz)=o[w({(z))], |z|<1, Imz>0,
-maps this semidisk onto
{£:ImE>0)—[{&: [E) = Uit 1 2 5]

in such a way that {—1, 1) is mapped onto [1, o). We now extend H univalently
t0 A using the Schwarz reflection principle. From the above discussion, we con-
clude for some choice of » and M that H/H(1} = P. To find F we solve (2.6) for
z and { in terms of w. We obtain-

d;z__ (l—rz)dg‘ N (1= r)wadi
2.7 z  (E=r1-rf)  f[=2r+(1+rHws]
ai dw

—f

¢ Nwiwawy
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Using (2.7) and changing variables, we obtain
a(w)dw
VW Twa[=2r + (1 +r2)ws]
2. ¢ Wi2NM/ (M+1)—i/w2—1]dw
=-(-r )’s 2.2 z
mwlwz[—2r+(l+r ywsl
B —2(1—r2)i\/ﬁd_§ dw
T M+ W+ Tw W =27 + (14 r2)w;]
(w—1)dw

—(1—r?
(-r )S NW 1wy wi[ =27 + (14 r?)ws]
=I1+J.

I and J can be integrated using the trigonometric substitutions

(M+1yw=Msecy—1 and (M+1)w=M+secy,

SH(Z)% =(1=rYi |

respectively. Doing this, we get locally for Imz >0, |z]| <1,
(2.8) Log F(z) =M+ (w({(z))) + A2,

where
o Aw)—M=1i
I(w)_Ra[ M, LOg[A(wH\/ﬁ-_zi]

2NM Log[\/1+RA(w)—R2iH’

2.9 TVITRR, CEVTTRAM)+ Ry
R M Log| MITBON | Ry TR~ RyB(W)

= 3[ : 0g|:M1+B(W)j| R, og[R|+RzB(w)B’
and .

Awy=wi/A/w+l, B{w)=Jw—1/w,.

Here X\ and A, are constants to be determined so that Fe S. Also all logarithms
in (2.9) can be chosen so that —r < arg(-) <0, as follows from mapping proper-
ties of A4, B and the fact that Im w > 0. To determine A, A, note that w({(0)) =
M3, s0if w=AM;+¢ then, for e =0,

M(M+1)e

-1 il 2
1+ R (R3) A(w)—l[l (RTDRZ ]+O(€ ),
(M+1)e
RzB(W)/R1=1+W+O(EZ).

Letting .

R _ Ry=M-1~+R+1 R _MR—R
¢ Ry+~M-1~R+1’ > MRy +R,’

and using the above estimates in (2.9), we obtain

(2.10)
I{Ms;+e)=R; ["M] Log(R4)+

2 M —M(M+1)e
L Ofe),
JiiRR, °g[2(R+1)R§ H“L (€)




18 ROGER W. BARNARD AND JOHN L. LEWIS

R Ry [—eM+D)
(2.11) J(M3+e)mR3[ }\/{,Log(R5)+R2 Log[ IRIR] ]}-{‘0(6).

Next observe from (2.6) that
2(1-rh’z
(1+rH?(M+1)
Using this equality in (2.10)-(2.11) and (2.9), we obtain

(M) (Log F(2) — Ma)/R;

e(f(2) = +0(z[»), lzi<1, Imz>0.

2M Ry
_ Logz—M, Log(R4R
2.12) [«/H—RRZ z] PerTh oIS
2M ~M(1~R) —(1-R%)
e LLOg | st T RIR? '
M L i el M
Th
us ()\ )AI__R LJMM__"F&
)= 3[\/17?162 Rz]’
N7 M(1-R
Xzz—}\le{-MlLOg(RdRS)'F ‘\/#/;R:R Lo l: (RZ )]
(2.13) [ :
R, "RXR? | R | VI+R o

Let e'? be such that w(i(e”®)) =M;. Then from our construction we see that
F(e'®y=—1. Using (2.9) with w =M, and the above equalities, it follows that

A (log F(e™) = N\y) /Ry = N\ ' (im = \2)/R;
(2.14)
[2M1 2M R,]

- — ir
V1+RR; R:

Hence, from (2.14),

(2.15) p=0,
WM R
(2.16) IM| — o — L = (),
JI+RR, Ry -

We note for fixed R, —1< R <1, that the left-hand side of (2.16) considered as
a function of M is decreasing on {1, =), as is easily shown. It follows that (2.16)
defines M as a function of R with limg , .; M(R) =1. Using a computer, we cal-
culated M as a function of R for varying values of R, We then put these numbers
into the expression for u. It turns out that (2.15) and (2.16) have a unique solution
for —1<R<1, M>1, when R=-0.69051--- and M =1.31846---. Uniqueness
was proved by first showing that the derivative of the expression for u considered
~as a function of R has a negative derivative on [—.9, ml]. We then estimated g

on (—~1,—.9) and (—3,1).

With R, M as above we now calculate 3, in Theorem 1. Put P(¢) = (log|£|) ,
£e C~10}, and let f(w)=F(z) where w and z are related by (2.6). Using Green’s
theorem, symmetry, and conformal mapping, we deduce for
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N=ANAJF(A)N{z: Imz >0}

that
gi=2{, Pwda
1 oP ar
- —ds=\ —d
2 SaF(A)ﬂA an ds SN an ]

- 4 2
=, .1 gy toslronD dw,

where dA is Lebesgue two-dimensional measure. Here w=wu+iv and the above
integral is taken over a portion of the real axis. Observe from (2.9) that I is pure
imaginary and J is real when w=u+iv, v=0, |u#|>1. Using this fact and the
Cauchy-Riemann equations, we find that

dal

— 2 ekl
ﬁ,«21>\1§|ul>11du du.

Since J and dI/dw are analytic in Im w > 0, the above integral can be evaluated |
by residues. To do this for given small ¢,>0, 1=i=<6, let C =312, C;, where
Ci={e¥e:0<0=7),
Cr={u: -l/ggsu<—ey—1},
Cy={—e "-1:0=0=<7],
Ci={wi—l+esusM;—e;,v=0],
Cs=[{M;—e;e 007,
Co={w:Msteysu=s—-M;—¢y,v=0},
Cr=(-M;—eie " 0<0=x),
Co={w: —My+ea=<usM;—es,v=0],
Co=[My—ese P 0sb8s7),
Co={w:Mi+es<u=l—es,v=0},
Cp=(l—ee %:0=0=7},
C12=[W11+€55u‘_:1/61;020],
(see Figure 1). From Cauchy’s theorem we see that
dar
ScJ}}E dw=0.
We note that
di .  —2\1-R’Mi
dw  (1+M)Yw+lw(w—My)w?
Using (2.17) and (2.9) we deduce, as ¢, €, 0, that

2.17)

dr
S ) LR S TZ aw.
C +C3+Cy dw —o  dw
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Gy

Figure 1

Similarly, as €, €5, and €5 > 0,

dl w dI
Sc9+cu +Cpp Jd_w dw - L J&W aw.

Using the fact that J(dI/dw) is real on Cyp, C4 and the above observations, we get

1 8 dr
2.18 A28y = —dw]|.
(2.18) A 261 =1m [Es SC,_ = dw}
Now on (s, it follows from (2.17) and (2.11) that

2.19) Im[SC J% dvé]:mzw[ M
5 2

Ry4/1~R

Also on Cy, dI/dw is real and Im J(w)=—7R | R; /Rz. Hence

dr RiR
(2.200 Im SC o dw=—r ‘;23
o

Again from (2.17),

+O(€3)]J[M3+€3].

[Re f(—M;—e4)—ReI(M;+e3)].

d
Finally, since dI/dw is real and Im J = 7R3 [{M;—R,/R:] =5 on Cy, we find that

dI
(221) Im SC J—W dW=[7rM1R3 +O(E4)] RCJ[—M2+E4}.
7

T
m Sc .fgw dw =28[Re I{Ms—es)—~Re I(—M;+e4)}
8

2.22 aw
(2.22) =~ Re [(=M, +e5)+ O(~/e3 ),

since Re J(M3)=0.
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We note that if w= —M,+¢, then

AW M
M~1 “’{ 4M2‘f}+0(6 ),
B(w) €
M, 1+(4MM)+O(E)
Thus,
I—M;+e)=R; {-—«M] LOg["’Me/(SM;)]
(2.23)
2NM
T LOg(-R:&)} + O(e)
and 1+RR2
My te)=Ry{— _
(2.24) J(~M;+¢)=R3{—M, Log[~¢/(8MM)]

+(R;/Ry) Log(—Rs)}+ Ole).
Using (2.10)~(2.11) and (2.23)~(2.24) in (2.19)-(2.22), we obtain, after summing
(2.19)-(2.22),
dl -1 2p2
lim Im 2 SG J— dw=nN["Mi R; Log(Rs/Rs)+2r MR} Log M

e—0 i35
sz"\/u RR, Lo MR}
R(1—R) R+1)

where e =max; < =4l€;}. Evaluating this equality and (2.13) at the values of R
and M mentioned earlier, and using (2.18), we obtain Theorem 1. |

3. Proof of Corollary 1. Let f be asin Theorem A. That is, 8 =area[A~f{A)],
where 3 is as in (1.1). Corollary 1 is an easy consequence of the following asser-
tion: Let ry be such that w(l—r&) = 3. If w=u+iv, then

G.D Ha—ﬁm w| 2 dudvz leoqw‘(” |w| ™% du dv.

To prove this assertion, note that if
Gi=[A~-flA)]=(w:irp<|w|<1],

Gy={wirp<|wl<1j—[A~f(A})],
then
max (|w]| %) < min (|w] %),
we s we G
since 7 - r "2 is decreasing on (0, ). This inequality clearly implies (3.1). From
(3.1) and Theorem 1 we get —2x log(rp) < .37, which implies that 8=x(} —rg) <
.31x. This completes the proof of Corollary 1. J
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