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1. INTRODUCTION

Let S denote the familiar class of normalized analytic univalent functions f defined by
f@=z+ Y a,z"
n=32

in the unit disk D = {z: |z] < 1} The starlike subclass §* consists of those functions
f &8 such that f(D) is starlike with respect to the origin.
If fisin S and w¢ f(D), then the function

(1.1) f=f10—fw)

belongs again to §. The elementary transformation f - £ is important in the study
of univalent functions. It is a useful technique in the proofs of many properties of §.
If F is a subset of S, let

F={f: feFandweC*\f[ED)}

where C*=C v {co}. It is clear that FeFeSand F=F 0 Fis compact in the
topology of locally uniform convergenee, then so is F.IfFis rotatmnally invariant
(i.e., e"**f(e™z) belongs to F whenever feF and aeR), then F is also rotationally
invariant. It is an interesting question to ask which properties of F are inherited by
F. Since §= S, this question is trivial for §.

In [2], [3] we studied the class K where K is the convex subclass of S. We
developed a variational procedure for K and applied it to extremal problems that
included the coefficient functionals a, and ta, + a3, the point-evaluation functionals
Re{o(log[ f(z)/z])} where ¢ is entire, the Koebe disk, and the radius-of convexity.
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212 R. W. BARNARD AND G. SCHOBER

In this article we shall consider the class §*. Simple examples show that §* is
strictly larger than S*. The nth coefficient problem for §* is solved by de Branges’
proof of the Bieberbach conjecture since the extremal function k(z) = z(1 —z) 2
starlike. On the other hand, there are many interesting problems in fanction theory
for which the extremal function over § is not starlike or even in §*. We shall restrict
our attention to such problems.

The purpose of this article is to develop a variational method extending the
procedure in [2] to a class of extremal problems for §*. In [2] the procedure basically
involved local variations of only circular arcs. In the current setting we shall need a
more general method involving a combination of the Léwner theory to vary tips of
slits and the Julia variational formula to vary circular slits in the plane. For our
purposes this framework appears to be superior to other methods since it permits
us to preserve certain geometric properties when the family of mappings does not
seem to admit a useful structural formuia.

We shall apply our method to the functional A:8§%* >R defined by
Mf)=Re{plog[z f'@if (z)1)} for any fixed nonconstant entire function ¢ and any
fixed ze ). We shall show that the probiem

max Re{p(loglzf"(z)/f (2]}
§* .

has a relatively elementary extremal function f. More specifically, in Section 4 we
shall show that f is generated through (1.1) by a mapping f € $* with at most two
radial slits and, furthermore, that w is the tip of one of the slits. As an application,
in Section 5 we indicate the numerical solution to the problem max arg[z f (z)/ f {z)]
81‘
"This permits us to determine numerically the radius of starlikeness of the class §* to
be approximately 0.6759. Indeed, this was our motivation in beginning this study.
Our methods are applicable to other functionals as well. For example, it is even
easier to study the point-evaluation functional A( = Re{o(log[ f (z)/z}}} It came
as a surprise for us that our extended methods enabled us to show that a class of
functionals involving even the derivative leads to such elementary extremal functions.
Normally, extremal functions for such functionals possess several more parameters.

2. VARIATION OF SLIT MAPPINGS

In this section we shall discuss how the Léwner theory and the Julia variational
formula can be used to produce variations within a class of functions.

Let f belong to § and map D onto a domain {2 whose boundary I" contains a
piecewise analytic slit T with endpoint w,. Let wy = f(€*°). We shall construct from
f a new function by either extending or shortening T in a speciﬁc manner or by
displacing T locally about w,.

First, to extend T, let T, be an analytic slit containing T with new endpoint w,.
Let y be the arc in D such that f(y)= 1)\ T. Parametrize y by w=w(t), t; <t <0,
and let w(0) = lim w(t) = ¢'®. Denote by g{(-, ) the function that maps [}-conformally
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MOBIUS TRANSFORMATIONS 213

onto D minus the arc w{{t, 0)} with normalizations g(0, £) =0 and 4'(0, t) > 0. Then
g(z, 0) =z and we may choose our parametrization (cf. {6]) so that ¢'(0, t) = &' and
that g satisfies the Lowner differential equation in the form

gz, 1) B dglz, t) 1 + e %9z
ot dz 1 —e"W0O;

(2.1)

The function # is a continuous function of ¢, and g(e*®, ) is the point w(¢). Consider
the function F(-, t) defined by the composition F(z, t) =¢ " f(g(z, £)). It is clear that
F(-,t)is in § for each t=[t,, 0]. Furthermore, with the help of (2.1} we see that F
has the asymptotic expansion

F(z, )= f(z)— [f(Z) —f'(@) %% (= 0)} +o(t)

L 14 eTig
(2.2) =flz})— [f (z)—zf"(2) —7;5;;“]1 +olf)
1—e 0z
as t.70. That the remaining terms are o(t), uniformiy on compact subsets of ),
follows from Tsuji’s work in {7, ch. IX].
Second, to shorten the slit, let T be parameterized by w=w{t), 0 <t <t,, with
w(0) = lim w(t) = €. Denote by (-, ¢) the function that has the normalizations
i~ 0 -
g(0,t)=0 and ¢g'(0, ) > 0 and maps D conformaily onto f([}) except that the slit
whose endpoint was at w(0) is now shortened so that its endpoint is at w(). Then
gl(z, 0)= f(z) and we may choose our parametrization so that g'(0, ¢) = ¢' and that

g satisfies a Lowner differential equation in the form (2.1). It is evident that the

function F(-,t) defined by F(z,t)=e 'g(z,t) is in S for each te[0,t,], and the
asymptotic expansion (2.2) is again vaiid as £0.

Thus we have defined variations of f within § with the expansion (2.2) as t — 0.
Negative ¢t’s correspond to extending the slit, and positive ¢’s to shortening it.

An additional variation will be necessary for our purposes. In the rest of this section
we will study the effect of displacing a slit locally near an endpoint. To do this, we
consider the slit T' < 80} as having two sides. The sides of T are viewed as the images
under f of distinct arcs y, and y, on 8D with common endpoint %, the preimage
of the tip of T

Let n(w) be the unit exterior normal to the boundary of Q at w= f{(e"), where ¢’
is in y=1y, Uy, Let @(w) be a real-valued, continuous, piecewise continuously
differentiable function on I' = 9Q that vanishes outside a compact subset of T and
at points of nonanalyticity of T, including its endpoint. We permit ¢ to be defined
differently on the two sides of T, but whenever f(z) = f({) for zey, and {ey,, we
require that o f(z) = —@- f({). Thus if ¢ is positive and sufficiently small, then
w* = w -+ sp(w)n{w) maps I" homeomeorphically onto an arc T"*, which is the boundary
of a domain Q¥. It follows from Julia’s work [4] that the Riemann mapping function
g* of I onto ©¥*, with g*(0) =0 and ¢*'(0)> 0, is given by

ezf'(z) C + z plo)n{o)
2ri Jp (-2 [P QOF

8

(2.3) g*(z) = fz)+ dw + ofe)
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as ¢ 0. Here w = f({) and the ofe) term is uniform for z in compact subsets of D.
In our development we shall apply this formula to obtain variations of certain
curvilinear regions.

It will be convenient to denote

(2.4) gy = dn@) o) g
T LSO [TEG]

where { = . Then it is apparent that di is real and that formula (2.3) becomes

ezf'(z) | [+z
o jrzmd¢+()

g*z)=fl2) +
Since
7 0)=1 +if dj + ofe),
2r Jr
the function f*(-)=g*(-)/g*'(0) belongs again to § and has the asymptotic form

2.5) @)=+ [zf’(Z) j (e
n St

dy — f(2) J dlﬁjl + o(e).

r

3. VARIATIONS FOR A DENSE SUBSET OF §*

For n=1,2,3,... let 8% consist of those mappings f in 5* whose complement
consists of at most n radial slits. By discretely approximating the measure in the
representation

f(z}ﬁzexp{w2j ' log(l—qz)d,u}, J du=1,
ot =1 =1

o - :
for functions in S*, it is easy to see that 5% is dense in S*, and it follows that
Y n .

n=1

U §* is dense in S*. Furthermeore, the sets §¥ and S# are compact.
n=1

Functions f in §* map D onto the complement of at most n circular slits in the
Rigmann sphere C*. In particular, if f=fia—f /wﬂ) then the slits of C\ f(D) all
lie on circles through the point w, = —w, and the origin {see Figure 1}. In fact, these
properties characterize functions in §*. That is, if ge § and if C*\ g(D) consists of at
most # slits which lie on circles through a point w, ¢ g(D) and the origin, then
f=g/(l —g/w,)belongsto §Fandsog= f=f/(1=fiwe), wo= —Wp, belongs to 5*.

In the test of this section we shall construct variations within S* by rotating a
circular {or linear) slit that passes through the commeon point w, to a slit lying on
a nearby circle that passes through w, and the origin. After renormalizing, the
variations will be of the form (2.5). ’

Let fe §* and Q = f(D), and assume that T = 80 contains the circular arc T lying
on'the circle C passing through origin and the point w;. Let AB and BD be the two
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FIGURE 1.

sides of T and y,p and yg;, the corresponding arcs on dD such that f(y,5) = AB and
f(vgp) = BD. For convenience of notation, for we T let w= f(z) = f({) where zey
and {eypp. )

We shall construct a variation w*=w+ze(w)n(w) of T by defining ¢ at
w=f(z)= f({)el" so that g f(z) = — ¢ f({). The sign of ¢ will be determined by
the direction in which T is to be moved. For weI'\ T the function ¢ will be zero.
Note that the circle C on which T lies belongs to the family of circles passing through
the ‘origin and w,. The variations to be constructed will be obtained by displacing
the slit T to slits T* lying on neighboring circles through the origin and w,, by
considering an adjustment at the endpoint, and finally, by renormalizing.

To define ¢ explicitly, let C* be a circle through the origin and w, a point that is
sufficiently close to C. Let the ray from the center of circle C through B intersect C*
at B*, The points of T* are constructed in the same fashion. Then the new slit T*
lies on C* and connects w, to B*. The varied boundary I'* is then (I'\T}w T*, and
the varied domain is * = C\I'*. However, in order to obtain a variational formula
of the form (2.3), an additional construction is necessary. Its purpose is to make ¢
vanish continuously also at the tip of T. Let Bf be a point on C* near B* such that
the ray from the center of C intersects the slit T. Let TT be the circular slit lying in
T* that connects w, to B, Let L¥ be the straight line segment joining Bf to B. Now
to each point w= f(z)= f({) on T we associate a point w* on the ray through w
fiom the center of C. The point w* = w*(w) is the intersection of this ray with the
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slit T%* if defined, and otherwise it is the intersection of this ray with the segment L.
On the rest of I define w*(w) =w.

If C* is sufficiently close to C, then the normal displacement in one direction is
given by

[w*(w) — w| = [w*[ f(z)] — f(z)| for zeypp
ep(w) = —Iw*(w)—wi= —|w*[f{]—f)| for (eygp
0 ‘ on the rest of T".

The signs are reversed for displacement in the opposite direction. The resulting ¢ is
continuous, piecewise continuously differentiable, and vanishes outside of T and at
the endpoints of T. Thus Julia’s variational formula (2.3) applies to the mapping
function g* onto the varied domain. However, the normalized function g¥(- )/g¥'(0)
does not necessarily belong to §* because of the adjustment just made near the
endpoint in order to use Julia’s formula. Nevertheless, if g* denotes the mapping
onto the desired domain Q* before the adjustment, then the argument used in [1,
pp. 348-356] shows that g* — g = o{¢) uniformly in compact subsets of [ as 60
(see also [2, p. 63]). Consequently, the function f* defined by f*(z) = g*(2)/g*'(0)
does belong to §* and also admits an asymptotic development of the form (2.5).

4. MAIN THEOREMS AND PROOF

We now state and prove our main results. For a fixed ze D, Jet the functional A be
defined for f eS* by

@.1) Af) = Re{p(logl="(2)/f )]}
where ¢ is a given nonconstant entire {unction. To be consistent, we choose the
branch of the logarithm for which log[«f'(x)/f(x)] vanishes at = = 0. First, we shall
consider the problem
4.2) max 4.

5%
Since 4 is continuous and §* is compact, an extremal function exists within S*_The
following lemma describes its properties.

I.A,EMMA 4.1 Suppose that n=2, and that A assumes iis maximum oOver §,’§‘ at
[=1/{1— fiw), feS8* Then f belongs to 5%. That is. { maps 1 onto the complement
of at most two radial slits, and furthermore, w is at the tip of one of the slits.

As a consequence of Lemma 4.1 there is a common solution to the problem (4.2)

for all n > 2. Since 4 is continuous and | §* is dense in 8*, it follows that this same
n=1
function solves the problem

4.3) - max 2.

Rid
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Notice, however, that this limiting procedure does not prevent the possibility of

fee)
additional extremal functions in §*\ { j §¥. Before proving Lemma 4.1 we record
i n=1
this consequence.

THEOREM 4.2 Let ¢ be a nonconstant entire function and z a fixed point of D. Then
the maximum value for the functional Re{op(log[z ey f (z)}}} over §* is assumed at
a function f = f/(1 — f/w) where f is in S3. That is, f maps D onto the complement
of at most two radial slits, and furthermore, w is at the tip of one of the slits.

Proof of Lemma 4.1 In order to verify the result, we need to show that if f is an
extremal function for the problem {4.2), then { maps D onto the complement of a
slit made up of a radial ray from some point w, to infinity and, possibly, an arc from
w, that lies on some circle through w, and the origin. In particular, the slit has only
one finite endpoint. We will show even more, namely, that the preimage of this tip
has to satisfy a certain condition.

To determine this condition for an extremal function f we assume that C\ f ()
contains an arc T with endpoint w, = f(e*®), lengthen or shorten T as described in
Section 2, and consider its effect on the functional A. If T is varied along its circle,
t"en the resulting normalized functmn F(-, t) remains in §*, and from (2.2) it has
the asymptotic form '

Fz, = 1)~ [f{Z) _af (z) ]t +o(t)

as ¢t — 0 through both positive and negative values. Its logarithmic derivative is of
the form | ‘

zFz, 1) + e““’“z:l’
o0 = q(z) + z[q(z) — |t oft)
where g(z) = zf'(2)/f(z). Let
B 1+ 2z 2l @1+l
4 K b= Z[W) 1_52"} / OG- o 1
Then we have
og Z}‘j éz ’E? — log q(z) + K{(z, e¥*)t + o(2),

»

qo(log "";f’t;)) — p(log a(2)) + ¢'(log 4K (z, ™)z +ofa),

and

F(z,t)

as t - 0. Since 4 is a maximum at f, it follows that

(4.5) Re{go’(log q(z))K (z, e®)} =0.

Re{(p (log e, ”)} — 1)+ Re{¢'(log g(2) K (2. )}t + oft)
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It will be useful to have a little more information about one of the factors in the
expressions derived from {4.4). For this purpose we use the fact that S§* is rotationally
invariant. Thus the rotation e~ f (e‘“z) 1s a competitor with the extremal function

f. Asa consequence, Re{o(logle™z 1(e"2)/ f(e2)] )} is a maximum for & = 0. This
implies that

0= Relpllog ae"))}| = Re{p'log a())izg ()/a(2).

a=0

That is, we may write
(4.6) ¢'(log g(z))zq'(z}/q(z) = R(z)

where R(z) is real at the point z for which the functional 7 is defined.

Next we shail show that an extremal function f has the property that C\ f(ID)
contains at most two tips. To do so, we shall show that the condition (4.5) can hold
in at most two points { = ¢% on the unit circle. Indeed, let £ = {z and use (4.4) and
(4.6). Then

Re{o'(log g(z))K(z, 5)}=Re{ (logq(z))( 22) }+ ()R{ J_’i}
:1—|§|2|:R {2 0 ﬂ;} R ]
T mqu{Zn(l-}&P)(z—g) +R(z) |

As { traverses the unit circle, £ traverses the circle |&| =+ where r=|z|. At the same

time, the Mobius transform (—6:)(;_5 also traverses a circle. If ¢'(log g(z)) £ 0,
- F
g2
it is a consequence that the factor Re {2@’(10g g(z)) (Iiflz%} + R(z) has at

xost two zeros, and so Re{y'(log g(z))K(z, {)} has the same property. Therefore
Cc\f {I?) contains at most two tips. We shall relax the assumption that ¢'(log g(z}) £ 0
later.

Now we suppose for the purpose of contradiction that an extremal function f has
the property that C\ f (D) contains two tips. In this case we shall make a variation
of f as in Section 3 by displacing one of the circular slits through the common point
w, to a nearby circular arc Iying on another circle through w, and the origin. Let
the slit be denoted by T= £ = f(y,) where p=1y; U7, lies on the unit circle,
P10y, = {e®}, and f(e) is the tip of T. By making this variation and then
renormalizing, it follows from {(2.5) that the resulting function F, will belong again
to S and will have the asymptotic form

i o - o f duj/] +ole)
_CZ .

as £{. The direction of the displacement is.incorporated into dys by the sign of ¢
in the definition (2.4) of diy. To determine the effect on the functional A, we find as

F2) = () + f— [zf'(z) j
n 7
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before
zFi(z) +{z
o 07 L[qml—c ] W o
log 2Fd2) _ log q{z} + — J K(z, () dyr + o(e),
Fz(z) Y
and

Re { (mg i ((Z)))} — A+ Re{qo'(log 4() ij Kz, ) dw} +ofe)

where g(z) = 2f"(2)/f(z) and K{z, {} is defined in (4.4). Since 4 is 2 maximum at 1,
it follows that

@.7) | Re{q)’(log 4(z)) J K(z, ) dw}so.

From (4.5) we know that Re{o’(logq(z))K(z,{)} vanishes at both points {
corresponding to tips of slits, and by the previous paragraph, it cannot vanish

elsewhere. As a consequence, Re{q'(log g(z))K(z, {)} has a constant sign for {ey,

and a constant, but oppesite, sign for { ey,. However, by varying in one direction |
or the other, that is, by choosing the sign of ¢ properly on y, and necessarily opposite

on y,, we can force each term in

Re{cp'(log 4(2)) J Kz 0) dw} - Re{m'(}og 9(2)) f Kz ) dw}

+ Re{q)’(iog q(z)) J K(z{) dtb}

to be positive, in violation of (4.7). This completes the proof of Lemma 4.1, except
to relax the assumption that ¢’(log g(z)) # 0.

The argument given by W. E. Kirwan in [5] would imply that @'(log q{z)) # 0 if
the family S* were closed under the operation f -» f, where fi{z)= f({2)/{ for
0<|{| <1 and fy(z) =z Unfortunately, it is not. However, the family $* is closed
under this operation. Therefore extremal functions for the problem (4.3) have the
corresponding property that ¢'(log g(z2)) # 0. If ¢'(log q(z)) were zero for extremal
functions to infinitely many of the problems (4.2), then by normal families and
continuity this condition would persist for §* and yield a contradiction. Thus Lemma
4.1 is proved for all » sufficiently large. But since the families $* are increasing, the
lemma. is true also for all n 2.

The same method applies to functionals of the form Re{o(log[ f {2)/z])}. Since the
proof is even easier, we omit it and only state the result.

THEOREM 4.3  Let @ be a nonconstant entire function and z a fixed point of D. Then
the maximum value for the functional Re{p(log[ f@)/zD} over S* is assumed at a
Sunction f = f/(1 — f{w) where f is in S%. That is, f maps D onto the complement of
at most two radial slits, and furthermore, w is at the tip of one of the slits.
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5. APPLICATIONS

In thi§ section we choose ¢@(x) = —ix and apply Theorem 4.2 to the functional
arglzf'(2)/f(z)]. Since this functional is rotationally invariant, it is no loss of
generality to assume that ze D is real and positive. That is, we shall consider the
extremal problem

(5.1) max arg[rf"(r}/f(r)]

for fixed r & (0, 1). According to Theorem 4.2 we need to consider only mappings in S%.
The mappings in 5%, which map onto the complement of at most two radial shits,
are of the form

z
(1 —xzf(1—yz)*~*

(5:2) fle}=

where x and y are complex numbers of modulus one and 0 < a < 2. The points on
4l that correspond to the tips of the slits can be determined by setting f'(z) = 0.
They satisfy the quadratic equation

(5.3) xyzZ 4+ (1 —a)x—y)z—1=0.

P
J

[

rf’(r!
F(r)
(NTE
]

max arg

S

0 ] I I T ]
0.0 0.2 0.4 0.6 0.8 1.0

T
FIGURE 2.
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In terms of the function f in (5.2) the functional in (5.1) is

o £0) }
arg[rf'{r}/f(r)] =ar
e /] g[f(r)[l — el

where { satisfies (5.3). The maximum of this expression over all x, y, and « does not
seem to admit a closed or even implicit form. Tt is, however, easily computed
numerically. These maxima as a function of r are indicated in Figure 2.
The maximum of arg[ f(r)/r] over §* as a function of r is also easily computed
numerically. Its graph is very similar to, but slightly above, that in Figure 2.

Of special interest in Figure 2 is that value r =* at which the curve reaches the
height 7/2. That value #* is approximately 0.6759, which occurs for a mapping (5.2)
with x = exp(0.2575i), y = exp(3.5132i), and o =0.4108. Thus Re{zf'(z)/f(z)} =0 is
true in the disk |z] < * for all functions f e §*, In other words, r* is the sharp value
such thatf(jzl <) is starlike with respect to the origin for all r<r* and all f e §*.
The number r* is called the radius of starlikeness for the family §*. It is remarkably
close to the radius of starlikeness tanh(r/4) ~ 0.6558 for the full class S.
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