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Extremal problems are considered for the class of functions in § that are Mobius
transformations of convex mappings. A variational method based on Julia's formula is
used to describe extremal functions for a certain class of problems. These admissible
problems are shown to have extremal functions which are either half-plane mappings or
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1. INTRODUCTION

Let § denote the familiar class of normalized analytic univalent
functions

o

flzy=z + Z a,z"

n=2

in the unit disk U = {z:|z] < 1}. The convex subclass K consists of
those functions f € § such that f(U) is a convex set.
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56 R. W. BARNARD AND G. SCHOBER
If f = § and w & f(U), then the function

f=i/0=f/w) (L)

belongs again to S. The transformation f— fis important in the study
of univalent functions. It is useful in the proofs of both elementary
and not so elementary properties of S.

If F is a subset of S, let

={f fE Fwelh\f(U)}.

Here ©* =CU (o0}. Since we admit w = 2¢. it is clear that F C £
< §. and since the composition of normalized Mobius transforma-
tions is again a normalized Mébius transformation, it follows that
F=F

If F is compact in the topology of locally uniform convergence.
then so is £. If F is rotationally invq.riam, that is, f,(z) = e~ “f(e™z)
belongs to F whenever f does. then F is also rotationally invariant. It
is an mtereslmg question to ask which properties of F are inherited by
F. Since § = S, this question is trivial for S.

In this article we shall consider the class K. Simple examples show
that K is strictly larger than K. Since the coefficients of functions in K
are uniformly bounded (by one), J. Clunie and T. Sheil-Small asked
whether the coefficients of functions in K have a uniform bound. The
affirmative solution of this problem was given recently by R. R. Hall
[3]. The question of the best uniform bound remains open as well as
the individual coefficient problems for K.

The purpose of this article is to apply a variational procedure to a
class of extremal problems for K. Tf A: K—R is a continuous func-
tional that sausfies certain admissibility criteria, we shall show that
the problem

maxA
K
has a relatively elementary extremal function f More specifically, in
Secuon 8 we shall show that f either is a half-plane mapping f(z)
z/(1 ~ e™:) or is generated through (1.1) by a parallel strip map-
ping fek.

The class of functionals’ considered contains the second-coefficient
functional A(/) = Rea, and the functionals A( f) = Re Pllog f(z)/ z)
where @ is entire and z is fixed. The latter functionals include the
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problems of maximum and minimum modulus {®(w) = *=w). There-
fore for such problems it i1s necessary to test the functional on!y‘over
Maobius transformations f(z) =z /(1 — ™) and over functions f gen-
erated by strip mappings f € K. In general. the extremal strip do-
mains f(U) need not be symmetric about the origin. This adds a
nontrivial and interesting character to the problems. Finally, in
Section 9 we explicitly determine such an extremal function for
the second-coefficient problem and obtain the sharp bound [a.f <
1327 ... in K.

2. JULIA VARIATIONAL FORMULA

In this section we formulate the Julia variational formula and later
show how it can be used to produce variations within a given class of
functions. The basic idea occurs in [6], and it is expanded in [2] and
[1]. For our purposes this method appears to be superior to other
methods since it will permit us to preserve easily certain geometric
properties and since the family K does not seem to admit a useful
structural formula.

Let f belong to § and map U/ onto a domain £ whose boundary is a
piecewise analytic arc . We denote also by f the extension of fto [\
Let n{w) be the unit exterior normal to @ at w €T, and let ¢(w) be a

- real-valued, continuous, piecewise continucusly differentiable func-
tton on I’ which vanishes at points of nonanalyticity of T". If € > 0 1s
sufficiently small, then w* = w + ed(w)n{w) maps T" homeomorphi-
cally onto an arc I'*, which is the boundary of a2 domain Q*. It follows
from Julia’s work [4] that the Riemann mapping function g* of I/
onto £*, with g*(0) = 0 and g*'(0) > 0, is given by

2f () {4z d(w)n(w)
*ay= f(z) + -
g (2) f Dt I‘f_z [fff(f)lz

as € = 0. Here w = f({) and the o{¢) term is uniform for z in cornpact
subsets of U. In our development we shall see that this formula
remains valid for certain variations of curvilinear polygons.

It will be convenient to denote

B0 ()
‘ i[ ¢ ] Filty!

dw+ of€) (2.1%

ds
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where ¢ = e®. Then it is apparent that df is real and that formula
(2.1) becomes

ezf'(2) J‘ $+z
T

g1 (2) = f(2) + —g— [ 35 d+o(o)

Sincé
Oy =14+ =
g0y =1+ 5= J;dx,b+ o(e),

the function f*(z)= g*(2)/ g*'(0) belongs again to § and has the
asymptotic form

4z

FE =+ 5 {zf’(Z)fF o W —f(a')frd\#} +o(e). (2.2)

3. POLYGONS

Forn=1,23,..., let K, ={f & K:f(U) is a polygon with at most
n sides). We. admit unbounded polygons so that K, consists of
half-plane mappings and K, contains. in addition, wedge and parallel
strip mappings. By discretely approximating the measures in the
representation

fiz) =exp{—-2£ﬂl=llog(l - nz)dp}, ‘j|;,}=1d“= 1,

for functions in K, it is easy to see that . K, is dense n K.
Furthermore, ‘cach set K, is compact.

Functions f in I{’,, map U onto curvilinear polygons with at most n
sides and with interior angles at most #. Furthermore, if f=f/0-
f/w), then the sides of af( U all lie on circles or lines through the
point w, = —w (see Figure 1). In fact, these two properties characier-
ize functions in IE,,. That is, if g € S and 3g(U) is a curvilinear n-gon
with interior angles at most « angd if the sides of dg(U/) all lie on
circles or lines through a point —w & g(U), then f=g/(1+ g/w)
belongs to X, and so f = g belongs to K,.

Finally, straightforward arguments show that |_j5. ]Kn is dense in K
and that each K, is compact.
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Figure 1

4. ADMISSIBLE FUNCTIONALS

We shall consider continuous functionals
AK—3E.

Since %, |1€,, is dense in K, the maximum of A over If’n converges to
the maximum of A over K as n— . In our development even more
will be true. We shall show that for admissibie functionals the
maximum of X over K, n > 2. occurs for a function in K,. 1t follows
that the same function provides the maximum of A over the entire
family K. _

Since we shall be concerned principally with the family K for the
next several sections. it will be convenient to drop the * in reference
to functions in £ and K,

The functional A will be called admissible if at an extremal function
f it has an expansion

}\(f’)=)\(f)+ﬁ£0(§)d¢+ o(€) as €0 (4.1

under variations of the form (2.2) and if the function ¢ is continuous
and vanishes at no more than two points of {{{ = 1. In addition. we
shall require that there is a constant ¢, # 0 such that

NI/ ffo) =N+ Re[ Thaof L) 4z

as w~> o0 in C\f(U).
The requirement (4.2) has an immediate consequence. If f is an
extremal function for the-problem

maxa,

"
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then (4.2} implies

Re[%}-&a(%)éo

as w— oo mm C\f(U). This means that the values omitted by f lie
asymptotically in a half-plane. Thus the curvilinear polygon f(U/)
cannot be bounded, and so the edge(s) to co must be straight.
Furthermore, if two edges meet at o, their exterior angle cannot be
more than 7. Since the interior angle is a priori not more than =, it
follows that there is exactly one edge of f(U) through oo (see Figure
1). Thus, if fis not a half-plane mapping, then f = g/(1 — g/w) where
g € K, and w is a finite nonvertex point of dg(U).

5. EXAMPLES

Consider the functional A( f) = Rea,. Under the variations (2.2) the
second coefficient satisfies

al=a,+ i‘ﬁ_(a2+2§?)d¢+ (),

and the function

d({)=Re({a, +2{)
has at most two zeros on [{} = 1. In addition,

- = 1 1
M f/(1 = f/w)) = Rea, + Re[ _ ] + 0( w) as w—> oo
so that (4.2) is satisfied. Therefore A(f) = Rea, is admissible.
Next let ¢ be a nonconstant entire function, and let z € U\ {0} be
fixed. Consider the functional A(f) = Re{®(log f(z)/z)}. Under the
variations (2.2) we have

@(Eog f»éﬁ ) = CD(log i(zfz )

d+ o(€).

e A, f(2) f(2) $+ 2
+§;<I\)(log P )_f;[zf(zz) gtz—l
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Since (¢ + 2}/(§ = 2) carries the circle I$i=1ontoa circle, in order
to show that the function :

o(§)=Re{®’(logM)[ Y1) s+ l”

z ey ¢z 7

can vanish at most twice, it is sufficient to show that @’(log(f(z)/:))
and (f(2)/f(z)) are different from zero. The latter is obviousty
different from zero. and W. E. Kirwan [5] has given an argument
which shows that @’(Iogf(:)/:) Is ot zero if fis extremal ang the

family (here K,)is rotationalty Invariaat. In addition,

A/ = f/wy)

= Re(@(logf_i:l)} — Rc{ fi}:)

‘I”(Iog f(:-)

Jjrel)

where o= —f(:)(D'(log(f(:)/:)) is not zero if fis extremal. Thus
A ) = Re(@(log(ﬂ:)/:})} is admissible.

6. VARIATIONS FOR CIRCULAR ARCS

Let fe}'f,,\ff, and Q= f({/), and assume that '=93Q is un-
bounded. Suppose that DA B E are points of T, in that order.

arc and D4 is a straight (see Figure 1).

Fix a point P op the arc 48, We shall construct varations of two
similar types: '

;o (6.1
¢ > 0 on the open arc 4p and ¢ < 0 on the open arc PB, (6.2)

Off the arc 48 the function p will be zero, If P is the endpoint 4,
then ¢ will be positive on the open arc 4B in case (6.1) and negative
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in case {6.2). Similarly, if P is the endpoint B, then ¢ will be negative.
in case (6.1) and positive in case (6.2).

Let w, be a point through which continuations of the arcs of I’ must
pass (i.e. the point —w in §3). Under certain circumstances it is
_possible that w, = 4 or w, = B. In these cases we shall restrict P+ A4
or P = B, respectively. Thus P is always different from w,.
 Note that the arc A8 lies on a circle € which belongs to the family
of circles through the points 2 and w,. The variations (6.1) and (6.2}
will be obtained essentially by displacing the arc A8 to arcs of
neighboring circles through P and w.

To define (6.1) let C* be a circle through P and w, which has the
open arc AP in its interior and the open arc PB in its exterior. Then
C* meets the segment 40 at a point A* so that the open arc 4* P lies
in €. Similarly, if C* is sufficiently close to C. then C* will intersect
the circle or line on which BE lies at a point B* near to {or at) B and
the open arc PB* will be exterior to . The varied domain Q* will be
obtained by replacing the curvilinear arc DA BE by the curvilinear arc
DA=B*E (see Figure 2). However, in order to derive a variational
formula of the form (2.2), an additional construction will be used in
certain situations. Its purpose is to make ¢ vanish continuousiy at the
endpoints of AB.

Denote the interior angles at A and B by a and 3. respectively. If
P+ A and a@ > 7/2, let A? be the end point on the arc 4* P such
that the interior angle between the segment A4} and the arc 4P is
7/2 — & for a sufficiently small fixed § > 0. If P+ B and 8 < 7/2,
let B} be the point on the arc B*P so that the angle between the
segment BBY and the arc BP is /2 — 7 for a sufficiently small fixed
n > 0. ‘

Now to each point w on 4B we associate a point w* on the ray
through w from the center of C. The point w* = w*(w) is the
intersection of this ray with the segment A4} and arc A}P if A7 is
defined or with the segment AA* and arc A*P if AT is not defined,
and it is the intersection with the arc PBY and segment BT B if Bf is

A

-~

Figure 2
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defined or with the arcs PB* and B*B if Bt 1s not defined. On the
rest of ' define w*(w) = w. :

If C* is sufficiently close to C, then the normal displacement is

=|w*(w)—w|  onthearc 4P
(W) =1 |w*(w) — w| on the arc PR
0 on the rest of T

The resulting ¢(w) is continuous, piecewise continuously differentia-
ble, and vanishes at the vertices 4 and 8. Thus Julia’s variational
formula (2.1) applies to the mapping function gg onto the varied
domain. However, the function g5(2)/g8(0) does not necessaniy
belong to i,, because of the possible adjustments near the endpoints
in order to obtain Julia's formula. Nevertheless, if g* denotes the
mapping onto the desired domain 9* obtained by replacing the
curvilinear arc DABE by the curvilinear arc DA*B*E then the
argument used in [2, pp. 348-356] shows that &% — gl = () as 0
(see also [7]). Consequently, fHE) = g*(2)/2*(0) does belong to 1’6”
and admits an asymptotic development of the form (2.2) where ¢
satisfies (6.1). '

To define (6.2) a very similar construction is used. The circle C*
passes again through w, and P, but PB* lies in © while 4* p does not
Proceeding as before, we obtain variations f* within £, that have the
asymplotic form (2.2) where ¢ satisfies (6.2).

7. AN ADDITIONAL YARIATION

If A is an admissibie functional and if f provides the maximum of i
over all functions in K, then based on the variations of Section 6 we
shall show in Section § that f belongs to X,, that is, Q = f{{/} has at
most two sides. In order to obtain further properties of f we shall
make use of an additional variation.

Figure 3
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For that purpose assume f belongs to Ifz\ K 1 Suppose that D, A4, B,
E are consecutive points of T = 3§ such that 4 and B are vertices of a
circular arc and such that D4 and BE are colinear segments. In
addition, assume that 4 % B so that the equal interior angles at A4 and
B are positive.

Let P and Q be distinct points on the arc 4B, different from A4 and
B. We shall make use of variations of the following types:

¢ > 0on PQ and ¢ < 0 on both AP and Q8B; (7.1
¢ < 0on PO and ¢ > 0 on both AP and Q8. (7.2

Off the arc A8 the function ¢ will be zero.

The constructions are very simiiar to those in Section 6. with P and
QO in place of P and w,. The arc 458 is replaced by an arc A*8* of a
circle through P and . The development of the asymptotic form
(2.1) for the mapping g* onto the varied domain obutained by replac-
ing DABE by DA*B*E is idenuical to the previous section, and we
omit it. It is clear that the various circles through P and Q produce
variations of both types (7.1) and {7.2).

Since the point w, (i.e., the point — w in §3) does not remain on the
circle C* containing the arc 4*B*, as 1t did in the variations of the
previous section, we must still show that the variations f*{z)=

- g*(z)/ g*(0) belong to K,. However, in this case note that f* is the
transform of a function in K, which maps U onto a wedge domain.

8. GENERAL THEOREMS

We are now in a position to describe extremal functions for the class
of admissible functionals A defined in Section 4. First, we shall
consider the problem _
maxA. 8.1
2 8.1
Since A is continuous and Kn is compact, an extremal function exists.
The following theorem describes its properties.

TueoreM 8.1 Suppose n > 2 and A is an admissible functional which
assumes its maximum over K, at f = /(1 = f/w), f € K. Then either f
is a half-plane mapping or else f belongs to Ky, [ maps U onto an
infinite strip domain, and w is a finite point of Af(U).
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As a consequence of Theorem 8.1, there is a common solution to
the problem (8.1) for all # > 2. Since A is continuous and Ur_ K, is

n=1

dense in K, it follows that this same function solves the problem

maxA.
K

Notice, however. that this limiting procedure does not prevent the
possibility of additional extremal functions in A7 K, Before
proving Theorem 8.1 we record this consequence.

THEOREM 8.2 If M is an admissible functional, then N assumes its
maximum over K ar a function I=f/00 = f/w) where f &€ K. Further-

mare. either fis a half-plane mapping or else f is a Strip mapping and w
is a finite poinr of Af(E)).

By specializing Theorem 8.2 10 one of the admissibie functionals in
Section 5 we have the following corolfary. Application to the second-
coefficient functional will be the subject of Section 9.

COROLLARY Ler ® be a nonconstans entire Sfunction. and ler :
€ UN{O) be fixed. Then the Sfuncrional

sy s 2|

assumes its maximum over‘]e ar a function f = f/{1 = f/w) where
[ € K. Furthermore, either f is a half-plane mapping or else f is a strip
mapping and w is a finite point of 3f(U). ‘

Proof of Theorem 8.1 Suppose that an admissible functional A
assumes its maximum over K, at f= f/(1 - f/w) where f € K,. We
know from Section 4 that the boundary I' = df(U) contains oo as an
interior point of one straight edge and that either f 1s a Mobius
transformation or w is a finite nonvertex point of 8f({/). Assume for
the purpose of contradiction that J/ is neither a half-plane mapping
nor generated by a strip mapping f.

As in Section 6, let D, 4, B.E be points of I" such that AB is a
circular arc and DA is straight. Necessarily A4 is different from B, for
otherwise, 4B would be a full circle and f would be generated by a
strip mapping f. Denote by v,, the open arc of |€] =1 that f carries
onto the open arc AB. Since the functional \ is admissible, there are
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three possibilities for the function o in the expansion

()
fn © Hio

(i) o does not vanish on y,,;

_A(f‘*) =A(f )+ ﬁ di+o(e), {=e" (41)

(i) o vanishes exactly once on v,,;
(i) ¢ vanishes exactly twice on v,,.

If it is possible to make variations f" within K s0 that ¢ o f has the
same sign as o, then {4.1') shows that f cannot be extremal. One of the
variations {(6.1) or (6.2) will have this property by choosing P to be an
end-point of 48 in case (i) and by choosing P to correspond to the
zero of o in case (ii). Therefore we are left only with the alternative
(ii1), in which ¢ vanishes twice on v,5.

If T were to contain more than one circular arc, then a second
choice of points D, 4, B, E would be possible (i.e., coming from oo in
the opposite direction). However, by repeating the argument of the
previous paragraph we could conclude that o has altogether at least
four zeros, in contradiction to the admissibility criteria. Thus T has
only one circular arc 4B, the points 4 and B are distinct, and o
vanishes twice on v,,.

Now let P and @ be the points of the arc 48 that correspond to the
two zeros of o on v,,. Then one of the variations (7.1) or (7.2) will
have the same sign as o on y,,. In this final case formula (4.1") shows
that f cannot be extremal. Since no alternative remains, the theorem is
proved.

8. THE SECOND-COEFFICIENT PROBLEM

In this section we shall apply Theorem 8. .2 to give a sharp estimate for
the second coefficient of functions in K. Surprisingly, the answer is
not an obvious one.

ToeoREM 9.1 If f(z) =z + ayz% + . .. belongs 1o K, then

lay| € —;cz'— $in xg — cos x4 = 1.3270
Xy
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where x,~ 20816 is the unique solution of the equarion

cotx = X (9-1)

B s

1
x

in the interval (O w). Equality occurs for the funciions e “*f{e’“*
a €R, where f( 1= flz)/]1 -—f(z.)/f(l)] and f is the vertical sirip
mapping defined by

] + 'z -
f()wzme bgk+e_mw- (8.2)

Proof Since the family K is rotationally invariant, the maxima of
Rea, and |a,| are the same. Thus by Theorem 8.2 we need to consider
omndy half-plane mappings f( y=z/(]1 — e™z), whose second coeffi-
cients have modulus one, and the transforms of strip mappings.
Therefore consider

f=1/=j/w) (9.3)

wherefxs a sirip mapping and w is a finite boundary point. Since |a,;
is invariant under rotations, we may rotate [ and f so that fis a
vertical strip mapping. Hence it is sufficient to assume that f has the
form (9.2) with x; replaced by x € (0.7) and to determine x and
w € 3f{ U/) so that the modulus of the second coefficient of (9.3) is as
large as possible. We shall see that 2 maximum exists and is larger
than one. Therefore this maximum is a sharp bound for |a,)|-

The second coefficient of (9.2) is —cosx, and so the second
coefficient of (9.3) is

a,= —cosx + 1/w. (9.4

Since the points 1/w vary on a circle that is symmetric with respect to
the real axis, it follows that the modulus of (9.4) can be a maximum
only when 1/w is real. The point w must be finite; hence

w=f(1)= >0 or w=f(-1)=2="TF <0

2 sm 2sinx
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In these cases (9.4) becomes
ay=h(x) or ay=—h{mr—x)
where

h(x)= —¢osx + %sinx (9.5)
and #(0) = 1. Thus the problem is reduced to finding the extreme
values of the function h for 0 < x < .

Since A(0) = h(w) =1 and h(7/2) =4 /7 > 1, the maximum of 4 is
larger than one, and it occurs at a point x, € (0, 7) where

ey o 2810 X 1,1
H(x) = == [cotx o + ZX} _ {9.6)

vanishes. We shall show that there is only one such point in (0.#). It
follows then that 1 < h(x) < h(x,), that &(x,) provides the maximum
of |a,}, and that there is an extremal function of the indicated form.

It is clear from (9.6) that #’(x) can vanish in (0.7) only if equation
(9.1) is satisfied. By inserting series into (9.5) one arrives at the
expansion

e (_I)n+lx2n—l

Hlxy= 2 @n+ )2n - 2)1

LER

Since (x*~'/(2n + 1)(2n — 2)!) is a decreasing function of n as long
as 0< x <y10/3, it follows that A'(x) >0 for 0< x <y10/3 =
1.825. Thus equation (3.1} can be satisfied only in the smaller interval
{v10/3 ,m). Finally, by checking derivatives, observe that x + cotx is
decreasing and x +(1/x — (1/2)x) is increasing on the interval
{Vm,w). Therefore equation (9.1) has precisely one solution in
(0, 7), and the proof is complete.
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