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'APPLICATIONS OF CONVOLUTION OPERATORS TO PROBLEMS
IN UNIVALENT FUNCTION THEORY

Roger W. Barnard and Charles Kellogg

In this paper we investigate a wide class of problems. We will exploit the
strengths and properties of convolution operators. The strength of these methods
lies in their ability to unify a number of diverse results. Of the previously known
results obtained in this paper, most of the earlier proofs were tedious examinations
of the specific properties of the classes of functions involved. In this paper we
are able to obtain and generalize many of these results and obtain a number
of new results including a verification of Robinson’s 1/2 conjecture in the case
of spirallike functions. In general, the proofs using convolution operators are clearer
and more concise and peint out how the unifying linear structure that is common
to so many of the problems can be used to solve them via convolution operator
techniques.

PRELIMINARY RESULTS

The unit disk in the complex plane will be denoted by I/. Let A be the class
of analytic functions on U/, Let 8§ denote those functions in A that are univalent
and nermalized by f(0) =0 and f'(0) = 1. Let C, 8%, K and 8, be the standard
subclasses of § congisting of the convex, starlike, close-to-convex, and spirallike
functions, respectively. Let P be the class of functions p in A which have positive
real part and are normalized by p(0) = 1. Let K, be the class of function f in
S that have " in P.

r="%

If f and g are in A with f(z) = 2 a,z" and g(z) = E b,z", the convolution
n=0

of f and g is defined by (f+ gz} = 2 a,b,z". Given f in A, we define the
re =0

convolution operator A - A by T'{g) = fx &

We will use the results and techniques of Ruscheweyh and Sheil-Small developed-
in [18] in connection with their proof of the Polya-Schéenberg conjecture. Specifi-
cally, the following theorem of theirs and the key lemma used in its proof will
be used in our work.

THEOREM A. Let h be in C. If f is in C,8* or K then k *fisin C,8% or
‘K respectively.

In their proof of Theorem A, they proved a most interesting key lemma. We
shall need the slightly more general version of their key lemma stated without
proof in their paper. For completeness we include a proof of the more general
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version using their result as a basis, The proof given is ome suggested by D.
Styer and D. Wright since their proof is much more concise than the authors’
original.

LEMMA A. Let ¢ and g be analytic in |z| <1 with ¢{(0) = g(0) =0 and
¢ (0)g"(0) # 0. Suppose that for each o(j«| = 1) and o(|o| = 1) we have

1+ aoz |
£y ' [¢*(-—)gj|(z)=;‘0 ond<|z|<r=1

l—oz

Then for each F in A the image of |z| <r under (¢ + Fg)/(p ~ g) is a subset of
the convex hull of F(U).

Remark. We note that in [18) they showed that if ¢ is in C and g is in
S5* then (1) is satisfied for all z in U.

Proof. Since ¢(z) + [((L+ aoz}/(1 ~o2)]glz) #£0 for 0 < {z] < r = 1 is
equivalent to @(rz} = [(1 + ac2) /(1 —o2)] g(z) # 0for 0 < |z| < 1 we can assume
r=1. In [18] they proved that if F has positive real part and (1) is satisfied
then Re{[(¢ « gF) /(g &)1 (2)} > 0 for z in U. For arbitrary ¥ in 4 the convex
hull of F(U) is defined to be the total intersection of all half planes containing
F(U). If we denote by F(U) the closure of F(U} then a line of support # of
F(U) is the boundary of a half plane containing F(I/) such thatB, = /N FO) £
For a given support line # let & be a point in B,. Then there exists an a such
that the half plane defined by the set {e™™* [(1 + 2) /(1 — 2)] + b: 2z € U} contains
F(U). For this « and b, if F, is defined by F,{z) = ™ [F(2) — b] for z in U/ we
have that Re F,{z) > 0 for z in U. Thus we can apply the Ruscheweyh-Sheil-Small
result to F, to obtain

* gF @ gl '
Re{‘P £ ‘(z)}=Re{e‘“‘P £ (z)—b}>0, € U,
o*g ¢*g

Therefore, for each z in U we have that [(¢ * gF)/ (¢ * g)](z} lies in the appropriate
half-plane for each support line # of F(U). Hence, it follows that

[(¢>gF)/ (¢ g) (L)

lies in the convex hull of F(U) as claimed.

" In order to ap;ply these results we shall need the following notation. Let T,
0 = i = 4 be the linear operators defined on A by the equations below.

Tofeb=2f"(2) T f@)={fla) +zf (2)1/2

A0 - FO) 2 [
sz(2)=g “{“""“E“f"“i“di rsf(2)=“-;g FlLyde
I“4f(2)=g TOZTED o sz el

0 [—x(
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We note that I',, generalizing I',, was first used by Pommerenke in [14].

We observe that each of these operators can be written as a convelution operator
given by [,f=h,« f, 0 = i = 4 where

= z “ on+1 z—2%/2
“h,(z) = ng" = —m— R (z)= 2" =
° 2:1 1-2° ,Z{ 2 1-2)°"
o | l 2 —2{z+ log(1l — 2}]
h, = —z2"=~log(l—2)  h,2)= 2" =
? z n g 3. 2 n+1 2

n=1
1—xz

= 2= log
‘ = dl-x)n 1—x [1—2

], fx|= 1, x#1.

The initial totivation for this paper was the authors’ investigation into the
properties of the operator I'; . The original work and conjecture about this operator
were given by R. Robinson in 1947 in [17]. For a given compact subclass X (possibly
a singleton) of 4 let ry(X) denote the minimum radius of univalence over all
functions f in X. We use corresponding notation for the other subclasses of S.
For example rg * (X) denotes the minimum radius of starlikeness over all functions
f in X. Robinson observed that for any f in S, the derivative of T, f(z) does not
vanish for |z| <1/2. He also noted that for the standard Koebe function
kiz)=2(1 — 2) %, rg [T, (k)] = 1/2. He conjectured that ry [I', (X)] = 1/2for X = S,
Although 1/2 has been verified to be the correct radius when X is replaced by
many of the subclasses of S, Robinson’s lower hound of .38 for r, [F {&)] has not been
improved until just recently. A straightforward argument using convolution tech-
nigues and Krzyz's result in [9] determining r, (S) can be used to show that
rg [I1{8)] > .417. (The first author has recently proved in {3] that
49 < rg [F, (8} = .50.)

Many authors have studied the appropriate minimum radii for the different
operators I';, 0 = { = 4 on various subclasses of 5. We list a few of these results.
Each of these and many of their generalizations can be obtained in a fairly
straightforward manner by the techniques presented in this paper.

The classical results of Alexander in [1] show that
re* [No(8)] =rs= [[o(8%)] =2~ V'3.
In [13] A. Livingston proved that
re [T{C)] =rg» [D(S*)] = rg [[,(K)] = 1/2
and that
2) rie, [N (KL)] = (V6 —1)/2.

Generalizations of these results have been given by Libera and Livingston in
{12] and by Bernardi in [5]. It has been shown by Causey in [8] and others _
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that ry [[,(K)] = 1. The example of Krzyz and Lewandoski in [10] shows that
re [T2(8)] < 1. In [11] Libera showed that

re [TolC)] = rg* [T(S™)] = rg [T (K)] =1

and these results have been generalized by Bernardi in [4]. Pommerenke in [14]
has shown that r¢ [T, (K)] = 1.

It is not difficult to find the radius of convexity of each of the functions A,
0 = i = 4, previously defined, that is, ro(h,) =2 -V 3,r.(h,) =1/2 and

rolhy) = rolhs) = rolhy) = 1.

These facts together with Theorem A yield the following theorem and its conse-
quences,

THEOREM 1. If fisin C,S* or K then I'.f = h, * f is convex, starlike or
close to conuvex, respectively, up to ro(h;) for each i, 0 =i = 4.

It is clear that Theorem 1 encompasses most of the major results previously
mentioned concerning the various radii with the sharpness following by using
the standard extremal functions for the specific subclasses. The generalizations
of these results can be obtained by an appropriate modification of the function
defining the operator. We shall later show how this can be done with Bernardi’s
work in [5] as an example,

APPLICATIONS

Livingston’s results in [13] follow from Theorem 1. That is, Robinson’s 1/2
conjecture is valid when X is replaced by C,8* or K simply because r {k,) = 1/2.
We shall now prove that X can also be replaced by S, the class of spirallike
functions. However, the result does not follow directly from the convexity of A,
up to 1/2 because, unlike C, S*, and K, 8, is not preserved under convelution
with convex functions as is shown by the example given in {10]. We shall, however,
still be able to cbtain the result using convolution techniques by going directly
to Lemma A. We shall need the following lemma which we can prove for the
more general class S.

LEMMA 1. Let f be in S and F(2) =1+ a,z+ ... be regular in U. Then,
the image of |2| < 1/2 under (h,» fF)/(R, ~ [} is a subset of the convex hull of
FU).

Progf. This result foliows from Lemma A upon showing that for all o and
o, {la] = o] =1}

A2+ {[f@ (1 +aoz)/(1 —o2))} =H{z £0  for0<|z| <1/2.

From the definition of &, we see that
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Hi) = (11-5- ooz )f(z)I:lwl-"Zf (z) N 1+ a)oz :l

— oz f(z) (1 — o2)(1 + acz)

Since fis in S, if we put { = ¢z, it is sufficient to show that for all a(ja| = 1)

Zf'(z) (1+a)l
f(z (1 — 01+ af)

for |z], | {| < 1/2. We note that since £ is in § we have that
Hog {[zf" ()} /f(2)}| = 10;‘:’% [(L+r)/(1-r)] for|z|=r
Let r = 1/2. We then have that
log {[2f' ()] /f(2)}| = log 3 for |z|= 1/2.

Now, we claim that |1 + e*| = 4/3 if |o| <log 3. To verify this, it clearly suffices
to consider » = —~pe’® for 8 in (-, w] and p > 0, and note that

—p cosd

f1+e*[°=1+¢ 2"+ 2[cos(psinb)]e

It is clear that the replacement of 9 by —6 does not change the above expression
and thus it suffices to consider 0 = 6 < =, Letting 2(p,8) = |1 + ¢*| %, we see that

ah
L]

—2pcos0 pcosB]

= 2pe [sin 6 + sin{6 —p sin 8) e

Tt now follows that /86 = ¢ and therefore

4 2
1+ |2 hip0) = |1+e™|*= (;)
and the claim follows. We now have that |1 + 2f' (2) /f(z)] > 4/3 for iz| < 1/2.
Lemma 1 will follow upon showing that for all «, (jai = 1),
1+ a)l

4
(3) —
dI-{{i+al) 3

provided | ¢} < 1/2. Inequality (3) will follow from our next lemma Wthh we will
use a number of times in this paper.

LEMMA 2. For |o|=1,.let f =[(1+a)z]/[1 — 21 + waz)]. If
izl =r<1, then |f () = 2r/(1 —17). :

Proof. Write a =e®™, —n/2<g¢p=x/2and z = re®. f we put ¢ = 0 + ¢
we see that g
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rie”* +e*)e”
fol2) = P ; 2 =it

1+re“e® —e ™) —rie
2r cos ¢

(1—r*ycost+i[2rsing — (1 + %) sint}
Now,

H1 — r®)cos t + i [2r sing — (1 + r°) sin £]|”
=(L—r®*+4r’sint —4r(1 + r*)sin ¢ sin t + 4r° sin’p
(1 +r?) ? R
= 4r2[sint —T-“Sin(p + (1 —r®%cos’e
r

=(1-r%* cosqu.

It now follows that | £, (z)| = 2r/(1 — r%).

With these results we can now prove that Robinson’s conjecture is valid when
S is replaced by §,,.

THEOREM 2. rg [T,(S,)] =1/2.

Proof. Since f is in 8, there exists a real v such that H(z) = e zf"(2)/ f(2)
has positive real part in U Tn gshow that I''f=h, ~ f is spn"alhke in !z| <1/2
we define H, by

H,(z) = [e"hy* f @]/ [hy+ f@)] = [hy = FR)HE@]/ [hy * f )]

Then Lemma 1 assures that H, [|z| <1/2] is contained in the convex hull of
H(U). The result follows by noting that k{z} = z2{1 — 2} % is spirallike for ~ = 0
and the radius of spirallikeness of I', (k} is 1/2.

As another example where we can use Lermnma A directly we prove L1V1ngst0n ]
result given in (2); that is, rp ([ (K,}] = (V 5 — 1)/2 = r, where f is in K, if
and only if £ is in P, Since

(hy « ) (2) = [B,(2) * 2f" (2)] /2= [Ri(2) » 2f" (2)] [ [Ayf2) * 2]

we need only show thatRe { [A, {2) * 2f” (2)] / [R,{2) * 2]} > O for | 2| < ry.By Lemma
A it suffices to show that

HE =hz)vz(1 +ac2)/(1 —oz) # 0for 0 < |z| <1y, |e| = |o]| =1L

However from the definition of 2, we have that

2H((z) = 2z + =

1+ aogz {1+ a)‘ozz 1+ aoz |:2 1+ ooz - :|
¥4 +
1—oz (1—o2)° 1-0z {

1—oz{l + aérz)

By using Lemma 2 we obtain
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1+ a)az
(1 — az){l + aoz)

N (1+ a)oz
(I~ az)(1 + aoz)

= 2-2r/(1-r%>0,

= 2

0=r<r,.
The result then follows by considering the function f, defined by
fie)=—-2log(l —2) —z

Let T'be Rogosinbski’s clags of typically real functions on U, noting that functions
in T need not be univalent. Let C; be Robertson’s (see [15]) class of functions
in T that have their images convex in the direction of the imaginary axis. Recall
Fejer’s observation that & is in C, if and only if zh' is in 7. We include a new
proof of Robertson’s result in [16] showing that T is invariant under convolution
with functions in C;. We then give a corollary showing its application to Robinson’s
1/2 conjecture.

THEOREM 3. Ifhisin Ciand fisin Tthen h~ fisin T,

Proof. Itis a standard result that fis in T'if and only if f(z) = 2(1 — 2%) 71.p (z),
where p is in P and has real coefficients. Also, for any function g in T, there
exists a nondecreasing function p., on [0,n] with u, (%) ~ u(0) = 7 and such that

% Jo 1—2zcost+2°

1r" z
gR)=—\\ ————————dn ().
For each ¢ in {0,w] the function g, defined by
28,/ (&) =2(1 ~ 2zcost + 2%) 7Y, g0) =0,
is convex because 2g,’ is starlike, Thus, for £ and sin {0, 7], g(2,5,t) = 28,7 (2} » g.(z}
is starlike by Theorem A and has real coefficients so that g(z,#,s) is in T

Hence g(z,5,t) = z(1 ~ 2°) ' p(z s f) where p is in P. By using these facts and the
properties of convolution, we obtain for A in C; that

O z
h= iz} = — hy———dp (¢
4 7r So 1~ 2zcost+ z° ‘pdf()

If
|,_. A=y

T:fi'v'() “ ¢t di ({8}
e o L—2Lcost+{® o

1 - 2
S _{S el TR (S)]*gt(Z)de(t)
ko
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where p, has real coefficients and is in P from the properties of n_, and u,.
Thus, from the characterization of T the theorem is proved.

COROLLARY. If fis in S and has real coefficients then h, * f is typically
real for |z} < 1/2.

Proof. This follows from Theorem 3 since r.(h,) = Fe,(#,) =1/2 and any
function in 8§ with real coefficients is in T.

We now give a generalization of Bernardi's results in [5}. Throughout Bernardi's
paper he considered ¢ a positive integer. We shall consider ¢ a complex number
with ¢ # —1. In each case when ¢is considered a positive integer we obtain Bernardi’s
results. We define A, by '

“n+c z— [e/Q + )] 2"
hoiz) = -
@) 2 1+cz (1—2)°

el

For fin A let the operator I';: A — A be defined by T (f) =k, * f.
THEOREM 4. () If Re{c} = 0 then r [[.(C}] = 1.
@) If

4r—1—rt

{4) Re {c} > p

and fisin C, 8* or K then h, * f is convex, starlike, or close-to-convex, respectively,
for |z| < r. If ¢ is real and greater than —1 then

(5 re [ AC)] =rg= [[(8M)] = rg[I'.(K)] =1,

wherer, = {2 — 8+ c*)V) /(A —~¢) forc#F landforc=1,r, =1/2.
(i) If
(6} e+ > 2r/(L-rY)
and fisin K, then Re {{h, = )} {2)} > 0 for | z| <r. If ¢ is real and greater than
=1, then r [T (K)} = r where r, = [-1 + {2+ 2¢ + c®YE L+ 6.

_ Proof. Part (i) follows from Theorem 1 by the easily proved fact that h_is
‘in K if and only if |¢/(1 + ¢) — 1/2| = 1/2 which is equivalent to Re {c} > 0.

The first part of (i} will follow from Theorem 1 upon showing that whenever
inequality {(4) holds then r = r(h,). Consider, for k(z) = 2/(1 — 2) % that

() horkrk hoch(krR)/R)

(‘7 + = z
Rl (2) h, vk h.=k

Since (&~ &)/ k(z) = (1+2)/(1~ 2), Lemma A assures that the term on the right
hand side of inequality (4) has positive real part whenever
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(8) hov (k0 +aoz)/(l—a2)] #0  foralla,o,|a| =|o| =1

and 0 < |z} < r. Thus we need only show that this r is determined by the condition
{4}. From the definition of A, and the comparison of their corresponding Taylor
geries we have that

(9 h.xk

1+ aoz 1 k1+omrz I: zk’ {1+ «)oz jl
1-o0z Wl"l"c 1 -0z )

+ +
E 1~ oz)(1 + acz)

Thus, it suffices to show that the.bracketed term in (9) is nonzero for |z| <r
determined by (4). From the definition of k{z) and Lemma 2 we have that

zk’(z) - 1+ ooz
¢+ + #0
k(2) (1= o2)(1+ aocz)

whenever Re {¢ + (1 + 2)/(1 — 2)} > 2r/(1 — r”). This holds when

2r 1—r 4r—1-7r®
(10) Re {c} > ~ - =
1-r 1+r i—-r

2

as claimed. For real ¢ > —1, (10} is equivalent to ¢ + 1 ~ 4r + (1 — e)r® > 0,
which holds whenever 0 = r < r,. In order to complete the verification of (5)
we consider the cases of sharpness. For the convex case we convolute A (z)
with z/{1 — z) to obtain o

zh7{z) (1+ct+42+ (1—e)z" 7
= = J(z).
Ri(z) (1—2[0+c)+ 0 —chz]

It easily follows that J(—7r,) = 0. For the starlike and close-to-convex case we
convolute 2, with k(z) to obtain ’

zth v k)’ 2h"(2)
e o1+ -

h *k R, (2)

Ji{z).

So that again J(—r,) = 0. Since for ¢ = 1, h_ » f = hy = f = T, f the case ¢
= 1 follows from our previous results.

We prove part (iii} by using Theorem 1 and noting as before that

h (2}« 2f ' (2)

A2y =+ 2

(h.x )'() =

Since fis in K,, Lemma A assures that Re {(h_ + f)'} > 0 whenever

(11) hox [zl +ac2)/(L-0c2)] #0,. |a|=|oi=1
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and 0 < |z| < r. We need only show that this r is determined by condition (6).
We have

14+ asz 1+ aoz 1+ aloz z
h +z = 1 ¢ - .
{ 1+¢

K 1 - oz 1 oz 1-ocz)1+ acz)

Thus applying Lemma 2 we have that inequality (11} holds whenever inequality
(6) holds as claimed. For ¢ > —1, inequality (6) is equivalent to

2] <7y = {=1+ 2+ 2+ e*)2] /(1 + ¢).

That r; = ry_ [, (K} follows by convoluting A (z) with f,{z} = —z — 2log {1l — 2)
to obtain

h,+fY (@ =[0+e)+22—1+c)2"1/1 -2 =gl2)

where g{—r,) = 0.

Another type of problem to which we can apply these techniques is the
following. Let G (2} = —f(—2)/f(z) and F(2) = f' (—2)}/f’ (2). In {7] Burdick, Keogh,
and Merkes determined the smallest @ and B such that Re {G(z)}" > 0 and
Re {F()}® > 0, zin U, for fin €, S* and K. Noting that

Glz) = [flay» 2/ + 2)]/[flz) = 2/(1 — 2}]

and that F)= [k ~flay~z/(1+2)]/[k@ «flz) »z/(1 — z)] we obtain the
following generalizations of their work. Given B, 0 = B < 1, let

S8*B)={f€ S:Re [ (2)/f(2)] =B,z U}.
LEMMA 3. If fisin S*(B) then
(12) - Re{[f@+z/0+2]/f3"" >0, ze U

The result is sharp.

This result follows readily from the Hérglotz representation for functions in $* (B).
Since fis in S*(B) there exists a probability measure u such that

™

log {f{z)/z] = 2(L —B) S log (1 ~ ze™)dp (£)

R

Thus we obtain

—f{—2) [ . S" 1—ze® :|
=exp| 2(1 —B) log —dp (t) |,
z : 1+ ze”

and the result follows. The sharpness follows by considering
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flet =4k () — 21 — 2) e

THEOREM 5. If fis in K then

) k * * 1 1/2(2—B»
(13} Re{[ wl) fle) v 2/ + 2) j| } >0, ze€ U.
' : kol » f2) :

The result is sharp.

z

Proof, Tet K,(2) = S (kﬂ(g)/g)‘dg. Since f is in K, 2f'(z2) = g(z)p(z) for g

0 .
star-like and Re {p(2)} > 0, z in U. Let p, designate a function with
Re {p,{a)} > 0, z in U, for ¢t = 1,2,3, and 4. Using these notations, Lemma A,
and the remark following Lemma A a number of times we have

-4

k * * * ! *
pl2) f(z_') 1. K, (2) = 2f " (2) P
ko(2) * f(2) K, (2)~2f'(2)
K * * * *
) o2+ gl2ip, (2) — _[Ka(z) £ p.(2) .
K, () vg@p) (K, @) g@]p,
(14)

2
}Pa (=)
z .

{[KB(Z) *gl2)] -

[K, (2) » g(2)] p,(2)

g0
{[kﬂ(z} ) S E;ﬁ"ﬁ'V‘ig:| ) 2 }pa (Z)
_ o & 1+z2

DR
[_ka(zwg ﬁfwda]pa(z)

0

Tgl) z
k * —d *
[ ﬁ(Z) So £ c] 1+z

= * 20 ps(2)p, (2).
ky(z) « TdC

o}

It is alsc easy to prove that.if 2 is in C then A «k; is in S*{B). So from the
convexity of [g(0/{] dt, Lemma 3, and the remark following Lemma A we

2(1

0
have that (14) equals p5"™ (2) p,(z) p; ' (2). Inequality (13) follows. Sharpness is
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proved by considering the function f(z) = A (2) = {z — [¢/(1 + ¢}] 25 /1—-2)% A
straightforward calculation gives that

larg { [k (2) * B, (2}~ 2(1 + 2) 1/ kg (2) * B2
{(1—z)“ﬁ[1+ [1—28/(+0)]z ]H
arg .
1+2 1-[L—28/(1+¢)z

If welet 1 — 28/(1 + ¢) = Re'® and z = ¢’ then, for § = —¢ + w/2, (15)
becomes

(16) -, =

{16} |(3 — 2B) /2 + Arxcsin [2R/(1 + R™)]|.
Since R approaches 1 as |c| approaches » we have that (16) approaches (2 — B)=
and the result follows.

As another application we answer Problem 6.45 posed by Krzyz in Research
Problems in Complex Analysis, in [2]. For 0 < a = 1 let S% be the class of
a-strongly-starlike functions defined by Brannan and Kirwan in [6]; that is,

*={(fE 8 |arg [2f (2)]]| <amw/2,|z] <1}. Let “ (@ ” be defined on A X A
as follows: for f(2) = Ta"z" and g{z) = Tb,2" define f(» g by

(f+g)2) = Z(a,b,/n)2",

Krzyz posed the following problems:
(a) Prove (or disprove) that S* is closed under () .

(b) Prove (or disprove) that if fis in S¥ and g is in S then f ® gin 8
for some v = y{a,B) < 1. :

(c} One could ask the same question for different convolutions in place of (» .
We first make the observation that (fg)(z) = S ¥4 (L)'/ {14t g(z). Since f is
]

H

in 87, g [£{0) /L] At is convex, thus the remark following Lemma A applies.
Q
If we let k(z) = (f®g)(2), then

— d{ = glz)
4

h(z) Xa i

(1)

lies in the convex hull of the image of UV under 2g’/g; that is,
larg [28/(2)/R(D]| < an/2

gince g is in §*. Therefore S* is closed under () and part (a) is resolved. For part
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z z

{(b), since f(z)* 1g(§)/£]dl=g LA /L] di~glzy if follows that

Q 0
~ = min [e, 3] will work and if § = 1 and ¢ < a = 1 sharpness follows using
fla) = k().

For part (c) if we denote a general type of weighted convolution by ®.,,
there are still many interesting open problems. Ideally one would like to “weight
it” by a function whose coefficients are of maximum modulus in the class. How-
ever, a straightforward, but long, argument using the fact that f in S} has
Re {[zf (& /F (z]}*™ > 0, shows that there are different extremal functions for
different coefficients, hence an inhefent difficulty in weighting the convolutions
in this manner. It might be of interest to note that if one defines (), for f and
gin 8F by :

(f ® &) =(f*g*wHa),

then an argument similar to that showing that §¥ is closed under & shows
that a sufficient condition for S* to be closed under this (), is that zww’{2)
be convex.
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