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. This is a survey article on the author’s involvement over the years with hypergeomeiric functions. We discuss our
- counter-example to one of M. Robertson’s conjectures, our results on the omitted values problems, Brannan’s conjecture
n the coefficients of a certain power series, generalizations of Ramanujan’s asymptotic formulas for complete elliptic

| integrals and Muir’s 1883 approximation to the arc length of an ellipse involving an inequality for some 3Fs’s. © 1999
Elsevier Science B.V. All rights reserved.

. This is a survey article on the author’s involvement over the years with hypergeometric functions.
- Although much of my early work has been in the field of geometric function theory, hypergeometric
_ functions have frequently reoccurred in many interesting ways. It started very early. In 1968 my mas-
ters thesis was on “Univalent solutions to hypergeometric differential equations”, where Robertson’s
univalence criterion in [36] was applied to solutions of the differential equation, w”+ p(z)w=0. Then,
- in 1972 while on a postdoctoral appointment at the University of Kentucky, I heard Richard Askey
~ give one of his inspiring talks on why everyone should krow all about hypergeometric functions. It
left an impression.

. In a very carly paper of the author [7], one of Robertson’s conjectures was investigated.

. To introduce some notation, let (), be Pochhammer’s symbol for the generahzed factorial: (a), =

35 ala+1)...(a+n—1) and define

Filabye:z)= i (—al'l@)ﬁz

n=0 (c)?’!n! "

- Let D, ={=z |z| <r} with D=D,. Let § be the class of functions, f, analytic on D, normahzed by
f (z)=z+---+bz"+ - and §* be those functions in § that map D onto a domain starlike with

. 0377-0427/99/$ - see front matter (© 1999 Elsevier Science B.V. All rights reserved,
. PII §0377-0427(99)00010-2
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respect to the origin. In [37,38] Robertson had conjectured that
i2b, — byby, | <2 (1)

for any f in S* and had shown that this is true for n = 1,2 and 3. He had shown in [38] that i
(1) held in §* then his conjecture that

|nb, — mb,| < |n* — m?| (2

for all functions in the more general class of close to convex functions would be valid. Conjecture
(2) was later verified in 1979 by Leung in [26]. However, in 1975 in [7] the function defined by

fulz)= Z (2%,“)5 Fil—kol—o—k: 1) = Zbﬂ(oc)z"
fe==0 ) k=l

was considered.

It follows from the geometric properties of f(D) that f, is in §* for « in [0,2). It was noted tha
for T,(o) = 2b,(0) — by(c)bp_ (), Ts(0) = Ts(1) = T5(2) = 2, while ¢75(a)/0x > 0 at & = 0. Thu:
(1) does not hold for some o > 0 for n=5. In fact, for a # 1, and 0 < & < 2, it was shown that

2 < T(a) < Ts(1 —vV2/2) =7/3.

In the 1980s, the author investigated, along with coauthors J.L. Lewis and K. Pearce, the omitted
values problem first posed [23] in 1949 by Goodman, restated by MacGregor in his survey article
[29] in 1972, then reposed in a more general setting by Brannan, [5] in 1977. It also appeared iy
Bernardi’s survey article [16] and has appeared in several open problem sets since then including
[9,20,31].

For a function f in S let A(f) denote the Lebesgue measure of the set D\ /(D) and let L(f,r
denote the Lebesgue measure of the set {D\ f(D)}N{w: |w|=r} for some fixed r, 0 <7 < 1. Twg
explicit problems posed by Goodman and Brannan were to determine

A =sup A(f)
fES

and
Liry=sup L(f,7r).
fes

Goodman had shown in [23] that 0221 < 4 < 0.50n and with Reich in [24] improved the uppe
bound to 0.387. In a series of papers we gavé a geometric characterization in [8,28] of an extrema
function £, for 4 and gave in [12] the currently best known lower bound, constructively, of 0.24n <4
The upper bound is conceptually harder. Indéed it appears difficult to use our geometric descriptior
of fo(D) to calculate 4 directly. However, we used an indirect proof in [11] to obtain the bes
lnown upper bound of 4 < 0.31n. ‘

Open Problem. Show that f, is unique and determine 4 explicitly.
The corresponding problem for starlike functions of determining

A" = sup A(f)

fes




R W. Barnard! Jowrnal of Computational and Applied Mathematics 105 (1999) 1-8 3

was completely solved by Lewis in [28)]. The uniquely defined extremal function f;, in §* gives
A" =A(f1) =~ 0.235n. The corresponding problem for starlike functions of determining

L*(r)=sup L(f,r)
fes*

~ was solved by Lewandowski in [27] and Stankiewicz in [39].

However, to this date, the interesting corresponding problems for the class $° of convex functions
in S remain open.

For the class S° of functions in S whose images are convex domains the corresponding problem
of determining

A*(r)=sup A(f,r)
Jese
and

Li(r) = sup L(f,r)
Fese

presents some interesting difficulties. One particular difficulty is that the basic tool of circular sym-
metrization used in the solution to each of the previous determinations is no longer useful. The
example of starting with the convex domain bounded by a square shows that convexity is not al-
. ways preserved under circular symmetrization. However, Steiner symmetrization (see [25,40]), can
- still be used in certain cases such as sectors. Another difficulty is the introduction of distinctly differ-
ent extremal domains for different ranges of . Since every function in 5° covers a disk of radius %
(see [22]) » needs only to be considered in the interval {%, 1). Waniurski has obtained some partial
results in [42]. He defined # and r, to be the unique solutions to certain transcendental equations
where 7y &~ 0.594 and », =~ 0.673. If F,;, is the map of D onto the half plane {w: Rew > —%} and
F, maps D onto the sector
< oc}

{W' ar (w«ki)
i 4o

whose vertex, v = —n/4u, is located inside D, then
ANr)=A(Fyp,r) for 12 <r <,
Li(r)y=L{Fyp,r) for 12 <r <r,

: and

Lry=L{F,,ry forrm<r<r.

The author announced in his survey talk at the 1985 Symposium on the Occasion of the Proof
of the Bierberbach Conjecture the following conjecture:

Conjecture, The external domains in determining A%(r) and L°(r) will be half-planes, symmetric
sectors and domains bounded by singles arcs of |w| =r along with tangent lines to the endpoints
of these arcs, the different domains depending on different ranges r in ..

This conjecture was also made independently by Waniurski at the end of his paper [42] in 1987.
Determining explicit values for A°(») and L°(») would involve computing the function that maps
D onto the convex domain bounded by an arc of {w: |w|=+} along with the two tangent lines at the
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endpoints of this arc. The function defining this map involves the quotient of two hypergeometri
functions (cf. [33]). In particular, an extensive verification shows that the function g is given by
renormalization of
(@)= 2 F (200 — 1)/4, 2o+ 3)/4;1 +a 1 z)
9= Qe+t 1) — 43 —2a)h1—a:z)

A difficulty arises when determining the explicit preimage of the center of the circle so that g can
be renormalized to the mapping function f in § taking D onto a domain whose boundary circle
centered at the origin. .

While spending a semester as a Research Scholar at the University of Kentucky in 1984, thg
author began working in approximation theory with L. Reichel who had just finished his degreq
under G. Dahlquist. We were using a differential equation model for difference equations developed
by Dahlquist. We were investigating the problem of obtaining exact estimates for the discrete no
approximation of continuous functions by Gram polynomials in terms of a sup norm. We had reduce
the problem to the verification of an inequality involving Kummer’s hypergeometric function, F:j
From considerable numerical evidence we made the following conjecture. '

Conjecture. |F\((1 — 2)/2;1 1 x)<Fi(3;1:x), a,x > 0.

This conjecture was also announced ‘at the survey talk on open problems and conjectures i
complex analysis and special function theory given at the Symposium on the Proof of the Bieberbac
Conjecture in 1985. It was discussed at several open problems sessions at conferences and appeared
in my survey paper “Open Problems and Conjectures in Complex Analysis” i [9]. While working
with one of my former Ph.D students K. Richards, we combined Bailey’s reduction formula and
Hankel’s integral formula for ,F,’s with properties of Bessel functions to prove i [10] that the mors

general inequality,

l—uo 1
1 (T;C : x) S_F(E;C : x)
holds for all «=0, c;% and x>0. By using the asymptotic behaviour of Whittaker’s version ¢
Kummer’s function we showed that the constants were sharp.

An innocent looking, but not so trivial, conjecture was made by Brannan in 1973 in [19] o
the coefficients of a specific power series. The problem originated in the Brannan et al. paper [21
(later completed by Aharonov and Friedland in [1]) solving the coefficient problem for functions o
bounded boundary rotation. Consider the cocfficients in the expansion

1—xz) &
((T——m;w))ﬁ = ZASI%B)()C)ZHJ ‘xl freed 1’ OC>O, ﬁ>0. (3
=0
Brannan posed the problem as to when
AFP)| <A, o

e gave a short elegant proof that (4) held if #=1 and «>1. However, he showed the surprisin;
result that for f=1,0 <a < 1, (4) did not hold in general for the even coeflicients. He showel
that for x = e, (4) held for odd coefficients in a sufficiently small neighborhood of 8= 0. He alst
noted that for 0 < a < 1, [4%?(x)| <457(1).
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By using the expansion

(BnF(—n,—o; 1 — f —n:—x)

n!

AP () =

: . and the properties of the hypergeometric function, we had shown the following:

1 =B < 4PA(1), for a< B, f+azland x| =1, x £ 1 and n=1,2,3,....
2. 145D (0] <451, n=1,2,3,... for O<a<a+e | —6<a<1 for ¢ and & sufficiently small
: and positive.

3. 48P0 <4 P, 0 <a<p<l.
In [32], Moak has shown that (4) holds for «>>1, > 1. Milcetich, in [30], has shown that (4)
. holds for n=35,=1 and 2 <a<n but does nos hold for noninteger o’s less than n— 1, B near zero,
- for odd nz3. Along with our current Ph.D student W. Wheeler, using matrix theory and computer
. capabilities, we verified in [15] that (4) holds for n = 7, O0<a<1, f=1.
. The following conjecture on the coefficients in (3) is still open.

. Conjecture. [4%1 ()| <A®D (1) for x =%, O<a<1 and n3>4.

Anather interesting set of problems arose from M. Vuorinen’s investigation of Gauss and Ra-
- manujan’s results on the complete elliptic integrals of the first and second kinds:

— 11, 5 — 11, 5
K(X)—TE/ZF(2,5,1 X ) and E(JC)—TC/ZF(ME,j,l .JC). | (5)
. Consider what are called the zero-balanced hypergeometric functions, F(a, b,a+b,x) where a,b > 0.
.. Gauss had shown that for the Beta function, B(a,b) = I'(a)(b)/T'(a + b), that

Fla,bja+b:x)~

1 lo L asx — 1
B a— —
B(a,b) 81 % ’

. while Ramanujan [17] refined this to
Bla,b)F(a,b;a+b:x)+1og(l —x)=R+ O((1 — x)log(1 —x))
- with R=2y(1)— y(a)—y(b) where Y(x)=I"(x)/I'(x) and Y(1)=—y=-0.5772... . Over a number
of years we were able to considerably refine these in [3] to the following result.
~ Theorem A. (1) For a,be(0,00) the function
1 —F(a,b;a+b:x)
Sy = log(1 — x)
s strictly increasing for x in (0,1) and maps (0,1) on to (ab/(a + b),1/B), where B = B(a,b).
(2) For a,b € (0,00) the function

g{x) = BF{a,b;a+ b : x) + log{l —x)
is strictly decreasing on (0,1) and maps (0;1) onto (R, B), where
R = —y(a) — y(b) — 2y.
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Theorem B. For a,b < (0,00), lef
f(x)y=xF(a,bya+ b :x)/log(1/(1 —x))
on (0,1) and let B, R be defined as in Theorem A.

1. If a,b ¢ (0,1), then [ is decreasing with range (1/B,1).
2. If a,b € (1,00), then f is increasing with range (1,1/B).
3. If a,b € (0,1) the function ¢,(x) = BF(a,b;a+ b : x) + (1/x)log(1 —x) is increasing on (0,1

and maps (0,1) onto (B — 1,R). _
4. If a,b ¢ (1,00), then g, is decreasing on (0,1} and maps (0,1) onto (R,B —1).

While studying relationships between the arithmetic-geometric means Borwein and Borwein {18
had proved that
11 1 1
Fl=,=1:1-x° =5 =+61:1 %7 6
(2,2,1 I x)<F(2 ,2—5—5,1 1 x) (
for all x € (0,1), with ¢ =2,d =3,0 = é
We obtained the following generalization.

Theorem C. For c,d ¢ (0,00) with 4c < nd, inequality (6) holds for all x € (0,1) and for a
8€(0,8), where & = ((dm — 4c)/(4nd))".

Theorems A and B have recently appeared in the text [4]. An improvement and generalizatio
of Theorem C has appeared in a brief survey by Ponnusamy [34]. More recently, the best possibl
value of &y = dy{c,d) for which the truth of the general inequality.

Fla,bja+b. 1 —xY<Fla~8b+dat+b+1 :1wxd):a,b,c,d>0,d>c,

for all x € (0,1) and all é € (0, ), has been obtained in [2] which in particular, settles Conjectun
4.10 (1) of [3]. This result gives a precise form of Theorem C. In Investigating properties o
E(x) in (5) Vuorinen [41] considered the fact that the arc length of an e¢llipse with semiaxes o
length 1 and b, where b < 1 can be expressed as L(1,b) =2nF(3,~3;1: 1 —b*). From antiquity]
various approximations for the arc length of an ellipse have been suggested. A relatively simpls
- approximation, first suggested by Muir in 1883 and again in Ramanujan’s notebooks, is given by

L(1,b) == 2n[(1 + b**)/21"

(see Berndt’s Ramanujan’s Notebooks Vol 1II; [17]). A computer examination of this approximatiof
led Vuorinen to ask in his survey on open problems [41], which has been discussed at severa
international conferences, if the function defined by

G(r):F(%,w%;l :r) — [+ (1 = rYy27"

is positive for r in (0, 1). )

Using computer algebra and Sturm sequence .arguments we initially showed [14] that, if G(r) 5
Y2, anr", then the function G(r)/r* is an increasing map of [0,1] onto [Eﬁﬂ/n— 2—373-] = [0.00006
0.00667]. This shows the surprising accuracy of the original Muir-Ramanujan approximation. Com
puter experiments suggested however, that a much stronger result held. Recently, in [13], Richards




RW. Barnavd | Journal of Computational and Applied Mathematics 105 (1999) 1-§ 7

Pearce and the author proved that @, > 0 for #>4. The proof is fairly involved using recurrence
relations, a transformation formula for 1F,’s of Thomae, Gauss’s and Whipple’s contiguous relations
for ;F1’s and ;F,-type, respectively, and generating functions for certain generalized hypergeometric
functions, 1 F,’s, A critical lemma in our proof is the general result that iF(—n,a,ba+b+1,1+e—-n:
1) >0 forall n >0 whenever 1 > ¢ > ab/(a+b+1) > 0, which we proved using an idea suggested
in an early paper of Askey et al. fe].

: For further reading

[35]
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