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Abstract

In this paper, we consider the second-order linear dynamic equation

y22 () +a(t)y (r(1)) =0

on a time scalél. Our goal is to establish some new oscillation results for this
equation. Here we assume thdt) < t andr : T — T. We apply results from

the theory of lower and upper solutions for related dynamic equations along with
some additional estimates on positive solutions.
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1 Introduction

In 1988 the theory of time scales was introduced by Stefan Hilger in his Ph.D. Thesis
in order to unify continuous and discrete analysis (see [10]). Not only does this theory
unify those of differential equations and difference equations, but it also extends these
classical situations to cases “in between” — e.qg., to the so-caltkfierence equations.
Moreover, the theory can be applied to other different types of time scales. Since its
introduction, many authors have expounded on various aspects of this new theory, and
we refer specifically to the paper by Agarwal et al. [1] and the references cited therein. A
book on the subject of time scales by Bohner and Peterson [4] summarizes and organizes
much of time scale calculus.

In recent years, there has been an increasing interest in studying the oscillation
and nonoscillation of solutions of dynamic equations on a time scale (i.e., an arbitrary
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nonempty closed subset of the real numbers). This has lead to many attempts to har-
monize the oscillation theory for the continuous and the discrete cases, to include them
in one comprehensive theory, and to extend the results to more general time scales. We
refer the reader to the papers [2,5,9, 13, 14], and the references cited therein.

Since we are interested in the oscillatory behavior of solutions near infinity, we
assume throughout this paper that our time scale is unbounded above. We gssuine
and it is convenient to assume> 0. We define the time scale intenjal, co)r by

[to, 00)T := [to,00) N T.
Our main interest is to consider the second-order linear dynamic equation
yRA () +a(t)y(r(t) =0, € [to.00)r (1.1)
whereq € C,.4 (T, [0, 00)) and where the delay € C,4(to, T) is such that

0<7(t) <t forallte [ty,oc0)r and thf?o 7(t) = 0.

Let us recall that a solution of (1.1) is a nontrivial real-valued funcyosatisfy-
ing equation (1.1) for > t,. A solutiony of (1.1) is said to be oscillatory if it is
neither eventually positive nor eventually negative; otherwise it is nonoscillatory. Equa-
tion (1.1) is said to be oscillatory if all its solutions are oscillatory. Our attention is
restricted to those solutiong¢) of (1.1) which exist on some half-ling,, co)r and
satisfysup{|y(¢)| : t > T'} > 0 foranyT > t,.

We note that (1.1) in its general form includes several types of differential and dif-
ference equations with delay arguments. In addition, different equations correspond to
the choice of the time scalB. For example, whefl = R, we havey® = ¢/, and so
(1.1) becomes the delay differential equation

y'(t) + q(t)y(r(t)) = 0.

In the casel = Z, y* = Ay and (1.1) becomes the second-order delay difference
equation
AAy(t) +qt)y(r(t)) =0

where A denotes the forward difference operator. Finally, whAen- {qg ke NO}
with ¢o > 1, (1.1) becomes the second-order dejgyglifference equation

y(g5t) — (g0 + Dy(got) + qoy(t) + qo(qo — 1)*t*q(t)y(7(t)) = 0.

In this paper we intend to use the method of upper and lower solutions to obtain
oscillation criteria for (1.1) under certain conditions. We also use results about

YRR () +a(t)y’(t) =0

to obtain results for (1.1). Our results generalize those given in Erbe [6].
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2 Preliminary Results

In this section, we state fundamental results needed to prove our main results. We begin
with the following lemma.

Lemma 2.1 (See [7, Lemma 1.2])Lety(¢) be a solution of

Yoo () + Z qi(t)y(ri(t)) =0
=1
which satisfies
y(t) >0, y*(t)>0, and y>2(t) <0
for all ;(t) > T > to. Then for each < i < n we have

y(mi(t)) > (Z—é:))—:;) v (t), 7i(t)>T.

In order to prove our main results, we need a method for studying boundary value
problems (BVP). Namely we will define functions called upper and lower solutions that,
not only imply the existence of a solution of a certain BVP, but also provide bounds on
that solution. Consider the second-order equation

yot = [ty (2.1)
wheref is continuous ona, bt x R.

Definition 2.2 (See [4, Definition 6.53])We say thatx € C?, is alower solutionof
(2.1) on|a, o*(b)]r provided

a2 (t) > f(t,ac(t)) forall t€ [a,blr.
Similarly, 3 € C?, is called arupper solutiorof (2.1) on|a, o*(b)]r provided
BRA(t) < f(t,B°(t)) forall t € [a,b]r.

Theorem 2.3 (See [4, Theorem 6.54]).et f be continuous ofu, b]r x R. Assume that
there exist a lower solutionr and an upper solutio@ of (2.1)with

ala) <A< B(a) and a(o?(b)) < B < B(a?(b))

such that
alt) < p(t) forall t e la,d®(b)r.

Then the BVP
y22 = f(t,y7) on[a,bly, y(a)=A, y(o*(b) =B
has a solutiony with

alt) <y(t) <pt) forall tc[a, o).
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We conclude this section with the following generalization of [11, Theorem 7.4].

Theorem 2.4. Let f be continuous ona, b]r x R. Assume that there exist a lower
solutiona and an upper solutiow of (2.1)with a(t) < g(t) for all ¢ € [a, c0)r. Then
for anya(a) < ¢ < 3(a) the BVP

yAA - f(ta y0)7 y(a> =cC (22)
has a solution; with
a(t) <y(t) < p(t) forall ¢ e [a,o0)r.

Proof. It follows from Theorem 2.3 that for each > 1 there is a solutiony,,(¢) of
YA = f(t,y") onla, t,)z With . (a) = ¢, yu(t,) = B(t) anda(t) < ya(t) < A(t) on
la, t,|T, wheret,, — oo asn — oo. Thus, for any fixedv > 1, y,,(t) is a solution on
a, t, |7 satisfyinga(t) < y,,(t) < 5(t) for all m > n. Hence, forn > n, the sequence
ym(t) is pointwise bounded ofa, t,, ).

We claim that{y,,(¢)} is equicontinuous ofu, ¢ y|r for any fixedN > 1. Sincef
is continuous ang,,(t) < 5(t) for all t € [a,ty]r, there is constank’y > 0 such that
lyS2 (1) = |f(t, 45 (1) < Ky forallt € [a, ty]r. It follows that

W20 —y2(0)| = / y23(s) As

< /KNAS

= KNt—CL)
S K (tN—CL)

which gives that

Y (D] < lym(@)| + [En(ty — a)l.
Since{y,,(t)} is uniformly bounded offu, t v | for all m > N, it follows that|y2 (a)| <
Ly for someLy > 0 and allm > N. Consequently,

ya(t)] < Ly + | Kn(ty — a)| =: My,

¢
/yTAn As

forallt,s € [a,ty]r provided|t — s| < 6 = ML Hence the claim holds.
N

and so,

Y (t) — Ym(s)| = < Myt —s| <e

So by Ascoli—Arzela and a standard diagonalization argunient(t)} contains a
subsequence which converges uniformly on all compact subintéavalg of [a, co)r
to a solutiorny(t), which is the desired solution of (2.2) that satisfig¢s) < y(t) < 5(¢)
forall t € [a, c0)r. O
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3 Main Results
In this section we give four results concerning the oscillatory behavior of
yoA () +a(t)y(r(8) =0 (1.1)

on the time scalé, co)r wheresup T = co andq € C,.4 ([0, 00)T, [0,00)). These are
Theorems 3.1 and 3.9 and Corollaries 3.4 and 3.7.

Theorem 3.1. Assume that the equation

y2a A%qmy”(w 0 (3.)

is oscillatory onfty, oo)r for some) < A < 1. Then all solutions of1.1)are oscillatory.

Proof. Suppose, to the contrary, that (1.1) has an eventually positive solutibmat is,
sincer(t) — oo ast — oo, there existd” € [ty, co0)r such thatu(t) > 0 andu(r(t)) >
0fort >T. Asq(t) > 00on|ty, co)r , we have

utB(t) = —q(tu(r(t)) <0 forall t>T, (3.2)

and sou” decreases to a limit which must be nonnegative. In fact, we must have
u®(t) > 0 on[T,c0)r. Indeed, ifu®(t;) = 0 for somet, > T, thenu®(t) = 0
on [t1,00)r. Consequently, from (1.1) we would hayét) = 0 on [t;,00)T, Since
u(7(t)) > 0 on [T, co)r, contradicting the fact that (3.1) is oscillatory. So we have

u(t) >0, u?(t)>0, u*>(t)<0 on [T,00)r.

For any0 < k < 1thereis dl}, > T such that

w(r (1)) > Cig = ;) w(t) > k%u"(t), > T,
by Lemma 2.1. It follows that
utB (1) + k’%q(t)u"(t) <0, t>T;. (3.3)
_ut(t) _ . 7(@)
Letz(t) = att) andQ(t) = k@q(t). Also, let
HE e
Then
u®(t)
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fort > T and
AA A2 AN 2
uU —(u U 1
AHQ+S() = %Hﬂ(—) —
U U 1_1_”7
AA AN2 AN 2
uU —(u U U
uu® U U+ pu
AA AN2 AN2
U —(u U
_ (), o ()
uu° uu’
AA
U
= ~ +Q
U
< 0

by (3.2). Hence, by [7, Lemma 1.13>2 + Qu° = 0 is nonoscillatory. Choosing

0 < k < 1such thatt > A, we haveQ(t) > Aﬂq(t) =: R(t). By the Sturm—

o(t)
Picone comparison theorem [8, Lemma 6], we therefore h&ve+ R(t)u’(t) = 0 is
nonoscillatory. This contradiction proves the theorem. O

Before we give the first corollary of Theorem 3.1 we prove the following.

Theorem 3.2. Assume there isa > a € T and au € C},[t., o0) such thatu(t) > 0
on [t,,oo0)r and

| Ol F - 0Pt =
Then the second-order dynamic equation
yo2 (1) +a(t)y’(t) =0 (3.4)
is oscillatory on[a, co)r.

Proof. We prove this theorem by contradiction. So assume (3.4) is nonoscillatory on
la,00)r. By [4, Theorem 4.61]y is a solution of (3.4) which is dominant ab such
that fort* > a, sufficiently large,

/ A
e Yy (t) ’

and we may assumgt) > 0 on [t*,00)r. Lett, andu be as in the statement of this
theorem. Lefl” =max{t.,t"}; then let
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It follows that

and
1+ p(t)z(t) >0 forallt>T.

Then by [4, Theorem 4.55], we have for T
(zu®)(t)
A2 2 . z(t)u(o(t)) _ A
= [ (O] = q(t)u(a(t)) : B0 V1 p(t)z(t)u(t)

< [t ()] — q(t)u*(o(t)).

Integrating fromI" to ¢, we obtain

<(02(0) < 2(T0HT) — [ a0 (o) = [ (0} A

which implies
tlim 2()u?(t) = —o0.

However, then there isB; > T such that for > T}

This implies thag/A(t) < 0fort > Ty, and hence is decreasing ofY}, co)r. However,

/TOO1A3 = Z/(Tl)yU(T1>/TmmAS
< T [ s
< 0o,

which is a contradiction. O
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The following example is illustrative.

Example 3.3.1f « > 0 and
| o a at =

where0 < a < 1, theny®® + ¢(t)y° = 0 is oscillatory on[a, co)r. We will show
that this follows from Theorem 3.2. In thé&®sche chain rule [4, Theorem 1.90], let
g(t) =tandf(t) =t3,for 0 < a < 1. Then withu(t) = (fog)(t) = t2, we have

w0 =) = { [ () 1) anf 1

2

1
g/taQth
2 Jo

X a—2

= —t2

2

_ %/1 (t + hu(D) =" dh

IA

052

T
/a T OF - AP} At > / h {q(t)(,

sincel < a < 1 implies
/ t* 2 At < oo.

Thusy®2 + ¢(t)y° = 0 is oscillatory ona, co)r by Theorem 3.2.

sincea — 2 < 0. Therefore, it follows thatu® (t))* < —t*~2 for all t. Hence,

Q
—~
~
~
|
e~
~
Q
&
H/_/
>
~
Il

As a corollary to Theorem 3.1, we have the following.

Corollary 3.4. All solutions of
y>2 4 q()y(r(t)) =0 (1.1)

are oscillatory in case either of the following holds:

() /oo(a(t))alr(t)q(t) At = oo for somen € (0, 1)

(ii) litrginft/ %q(t) At > 411 andx(t) is bounded
o0 t
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Proof. If (i) holds, then for any\ > 0, / o“(zf)/\ﬂ (t) At = co. By Example 3.3,

o(t)"
t . . .
AL 4 )\&q(t)yg(t) = 0 is oscillatory sincé) < oo < 1. Hence, by Theorem 3.1, all

o(t)
solutions ofy>2 + ¢(t)y(7(t)) = 0, equation (1.1), are oscillatory.
Next assume (ii) holds. Then by [12, Theorem 4],

r 4 St (0 =0

is oscillatory. Sinceu(t) is bounded, we have that*® +

%qu)y(r(m —0is

oscillatory by [14, Theorem 2.1] witlf(¢) = ¢. By the Sturm—Picone comparison
theorem [8, Lemma 6], we have (1.1) is oscillatory sifice 7(t) < t < o(t). O

To prove our second corollary of Theorem 3.1, we will use the method of upper and
lower solutions and the following lemma.

Lemma 3.5. If
/ T(t)q(t)At = oo, (3.5)
then every bounded solution of equat{@al)is oscillatory on[ty, co)r.

Proof. Suppose that there exists an eventually positive and bounded sajuifdB.1).
Then there exist$’ € T such that

y(t) >0, y>(t)>0, y*2@)<0 foral t>T >t
and without loss of generality, there existG € R such that
O<a<y(t)<p forall t>T.
LetY (¢) = ty”(t). Then
t
Y(t) = Y(T)+ / Y2(s) As
T
t
= YD)+ [ {6+ el B 0} As
T
t

- v+ [ {y%s) —a(s)A

t

= Y(T) +y(t) — y(T) — A / r(8)q(s)y”(s) As

T

S R R H($)a(s)y7(5) As
< Y(T)+ 8- y(T) - Aa / r()q(s) As

T
— —o00 ast — o0,
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i.e., there is a constadt’ > 0 such that

M N
Y2 (t) < -— fort>T

for someT > T, and this implies thattim y(t) = —oo by [3, Example 5.15], contra-
dictingy(t) > 0 for all t > T Thus every bounded solution of
t)
— Al )y’ (t) =0
v+ Y (D)
is oscillatory. O

Example 3.6. Consider the delay dynamic equation

y 2 (1) +

oY (T0) =0 fort =t (3.6)

It follows that
t t AS
/ 7(s)q(s)As = / — — 00 ast — oo.
to to s
Therefore, by Lemma 3.5, every bounded solution of (3.6) oscillatég o).
We can now state and prove our second corollary of Theorem 3.1.

Corollary 3.7. All bounded solutions of the linear second-order dynamic equation

y>2 4+ q()y(r(t)) =0 (1.1)
are oscillatory in cas€3.5) holds.

Proof. Letwu be a bounded nonoscillatory solution of (1.1) wittt) > 0 andu(7(t)) >
0 fort > T. Sinceu™?(t) < 0 for all £, we haveu® () > 0 on [T, c0)r. As in the proof
of Theorem 3.1, for any < k < 1 there exists &), > T such that

and
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Soa«, [ are lower and upper solutions, respectively, of

t)

28 370 L@y — o, 3.1

y +O(t)Q()y() 0 (3.1)

As u is increasinga(t) < G(t) on [T}, c0)r. Then by Theorem 2.4, there is a solu-
tion y(t) of (3.1) satisfyingu(7) < y(t) < wu(t) on[T},o0)r. As u is boundedy is

a bounded nonoscillatory solution of (3.1) . This is a contradiction to Lemma 3.5 and
proves the theorem. ]

In order to prove our last result, which in an extension of [2, Theorem 4.4], we need
the following lemma.

Lemma 3.8. Lety(t) be a positive solution ofl.1) defined orjT’, o)t for somel” > 0
that satisfieg/” (t) > 0 andy>(t) < 0 on [T, c0)r. If (3.5)holds, then there exists a
Ty > T such that

y(t)

> y(t) . : .
A = t and " is decreasing (3.7)

on [T}, 00)r.

Proof. Let y(¢) be as in the statement of the lemma and assume (3.5) holds. Also let
Y (t) :=y(t) — ty™(t). ThenY2(t) = —o(t)y*2(t) > 0fort € [T, c0)r. This implies
thatY (¢) is increasing o7, co)r.
We claim there is &7 € [T, 00) such thatY'(¢) > 0 on [T},00)r. If not, then
Y (t) < 0on|[T},c0)r. Therefore

(1) w0 v,

to(t) to(t)

y(t)

which implies thatT is increasing on7y, c0)r. Choosely € [T7,00)r such that
7(t) > 7(T3) fort > Ty. Then

y(r(®))
7(t)

which givesy(7(t)) > Dr(t) fort > T,. Now by integrating both sides of (1.1) from
T, to t, we obtain

y(7(T2))
7(T3)

> =D >0,

t

y>(t) — vy () + / q(s)y(t(s))As = 0.

T>

This implies that
t

y2(Ty) > D [ q(s)7(s)As,

Ts
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which contradicts (3.5). Hence there i$ac [T, co)r such that’(¢) > 0 on[7}, co)r,
and the first part of (3.7) holds. Moreover,

yO\"  tyA ) —y(®) Y(t)
(T) — W = —m <0, te][l,o00)T,

and we have thagg is decreasing oY, co)r. This completes the proof of the lemma.

O
Theorem 3.9. Assumé3.5) holds. If
) o 7(s) B
tlgélo <t/t q(s)a(s) As) = 00, (3.8)

then every solution of1.1)is oscillatory on(t, oo)r.

Proof. To the contrary, supposgis a nonoscillatory solution of (1.1). Then there exists
T € T such that

y(t) >0, 32(t)>0, and y*2(t) <0 forall t>T >t,.

It follows that fors > ¢ > T we have

[ atwtr) du=— [ 50 u =yt - 46 < o210
and hence -
| atwntrw) au < .
From the above inequality and Lemma 3.8, it follows that for sufficiently larger
y(t) > ()
>t atwlriw) A

[ a0 ™y 20

v

\]

> y(t) (t /too Q(U)% AU>

> y(t) (t /too q(U);(Zg AU)
and so

= ) q<u>;§g Au,

a contradiction to (3.8). This completes the proof. ]
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Example 3.10.Leth > 0 andT = hZ = {hk : k € Z}. In this case (1.1) becomes

y(t +2h) = 2y(t + h) +y(t) + RPq(t)y(7(t)) = 0. (3.9)
Assume that
b/h—1
lim hr(hk)q(hk) = oc.
breo k:to/h

Then every bounded solution of (3.9) oscillategnco)r. Additionally, if,

W (k)
li n 1 =
Sy Y W0 fim Dl =00

k=n

then every solution of (3.9) is oscillatory ¢, o).

4 Conclusion and Future Directions

In this paper we have obtained sufficient conditions for the oscillatory behavior of

y22(1) +a(t)y(r(t) = 0.

This was done by comparing nonoscillatory solutions of the delay dynamic equation
with the solutions of a corresponding linear dynamic equation and then using known
properties of the linear equation to obtain a desired contradiction.

Possibilities for further exploration include changing the leading tertptgy~ )~

[e.9]

wherep(t) > 0 on the time scale intervad,, co)r and/ I% = o0, and replacing
() < &(

the delayr(¢) with the advancg : T — T whereo (¢ t) andthm £(t) = oo.
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