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Abstract

In this paper, we consider the second-order linear dynamic equation

y∆∆(t) + q(t)y (τ(t)) = 0

on a time scaleT. Our goal is to establish some new oscillation results for this
equation. Here we assume thatτ(t) ≤ t andτ : T → T. We apply results from
the theory of lower and upper solutions for related dynamic equations along with
some additional estimates on positive solutions.
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1 Introduction

In 1988 the theory of time scales was introduced by Stefan Hilger in his Ph.D. Thesis
in order to unify continuous and discrete analysis (see [10]). Not only does this theory
unify those of differential equations and difference equations, but it also extends these
classical situations to cases “in between” – e.g., to the so-calledq-difference equations.
Moreover, the theory can be applied to other different types of time scales. Since its
introduction, many authors have expounded on various aspects of this new theory, and
we refer specifically to the paper by Agarwal et al. [1] and the references cited therein. A
book on the subject of time scales by Bohner and Peterson [4] summarizes and organizes
much of time scale calculus.

In recent years, there has been an increasing interest in studying the oscillation
and nonoscillation of solutions of dynamic equations on a time scale (i.e., an arbitrary
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nonempty closed subset of the real numbers). This has lead to many attempts to har-
monize the oscillation theory for the continuous and the discrete cases, to include them
in one comprehensive theory, and to extend the results to more general time scales. We
refer the reader to the papers [2,5,9,13,14], and the references cited therein.

Since we are interested in the oscillatory behavior of solutions near infinity, we
assume throughout this paper that our time scale is unbounded above. We assumet0 ∈ T
and it is convenient to assumet0 > 0. We define the time scale interval[t0,∞)T by

[t0,∞)T := [t0,∞) ∩ T.

Our main interest is to consider the second-order linear dynamic equation

y∆∆(t) + q(t)y(τ(t)) = 0, t ∈ [t0,∞)T (1.1)

whereq ∈ Crd (T, [0,∞)) and where the delayτ ∈ Crd(t0, T) is such that

0 < τ(t) ≤ t for all t ∈ [t0,∞)T and lim
t→∞

τ(t) = ∞.

Let us recall that a solution of (1.1) is a nontrivial real-valued functiony satisfy-
ing equation (1.1) fort ≥ t0. A solution y of (1.1) is said to be oscillatory if it is
neither eventually positive nor eventually negative; otherwise it is nonoscillatory. Equa-
tion (1.1) is said to be oscillatory if all its solutions are oscillatory. Our attention is
restricted to those solutionsy(t) of (1.1) which exist on some half-line[ty, ∞)T and
satisfysup{|y(t)| : t > T} > 0 for anyT ≥ ty.

We note that (1.1) in its general form includes several types of differential and dif-
ference equations with delay arguments. In addition, different equations correspond to
the choice of the time scaleT. For example, whenT = R, we havey∆ = y′, and so
(1.1) becomes the delay differential equation

y′′(t) + q(t)y(τ(t)) = 0.

In the caseT = Z, y∆ = ∆y and (1.1) becomes the second-order delay difference
equation

∆∆y(t) + q(t)y(τ(t)) = 0

where∆ denotes the forward difference operator. Finally, whenT =
{
qk
0 : k ∈ N0

}
with q0 > 1, (1.1) becomes the second-order delayq0-difference equation

y(q2
0t)− (q0 + 1)y(q0t) + q0y(t) + q0(q0 − 1)2t2q(t)y(τ(t)) = 0.

In this paper we intend to use the method of upper and lower solutions to obtain
oscillation criteria for (1.1) under certain conditions. We also use results about

y∆∆(t) + q(t)yσ(t) = 0

to obtain results for (1.1). Our results generalize those given in Erbe [6].
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2 Preliminary Results

In this section, we state fundamental results needed to prove our main results. We begin
with the following lemma.

Lemma 2.1 (See [7, Lemma 1.2]).Lety(t) be a solution of

y∆∆(t) +
n∑

i=1

qi(t)y(τi(t)) = 0

which satisfies
y(t) > 0, y∆(t) > 0, and y∆∆(t) ≤ 0

for all τi(t) ≥ T ≥ t0. Then for each1 ≤ i ≤ n we have

y(τi(t)) ≥
(

τi(t)− T

σ(t)− T

)
yσ(t), τi(t) > T.

In order to prove our main results, we need a method for studying boundary value
problems (BVP). Namely we will define functions called upper and lower solutions that,
not only imply the existence of a solution of a certain BVP, but also provide bounds on
that solution. Consider the second-order equation

y∆∆ = f(t, yσ) (2.1)

wheref is continuous on[a, b]T × R.

Definition 2.2 (See [4, Definition 6.53]).We say thatα ∈ C2
rd is a lower solutionof

(2.1) on[a, σ2(b)]T provided

α∆∆(t) ≥ f(t, ασ(t)) for all t ∈ [a, b]T.

Similarly, β ∈ C2
rd is called anupper solutionof (2.1) on[a, σ2(b)]T provided

β∆∆(t) ≤ f(t, βσ(t)) for all t ∈ [a, b]T.

Theorem 2.3 (See [4, Theorem 6.54]).Letf be continuous on[a, b]T×R. Assume that
there exist a lower solutionα and an upper solutionβ of (2.1)with

α(a) ≤ A ≤ β(a) and α(σ2(b)) ≤ B ≤ β(σ2(b))

such that
α(t) ≤ β(t) for all t ∈ [a, σ2(b)]T.

Then the BVP

y∆∆ = f(t, yσ) on [a, b]T, y(a) = A, y(σ2(b)) = B

has a solutiony with

α(t) ≤ y(t) ≤ β(t) for all t ∈ [a, σ2(b)]T.
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We conclude this section with the following generalization of [11, Theorem 7.4].

Theorem 2.4. Let f be continuous on[a, b]T × R. Assume that there exist a lower
solutionα and an upper solutionβ of (2.1)with α(t) ≤ β(t) for all t ∈ [a,∞)T. Then
for anyα(a) ≤ c ≤ β(a) the BVP

y∆∆ = f(t, yσ), y(a) = c (2.2)

has a solutiony with

α(t) ≤ y(t) ≤ β(t) for all t ∈ [a,∞)T.

Proof. It follows from Theorem 2.3 that for eachn ≥ 1 there is a solutionyn(t) of
y∆∆ = f(t, yσ) on [a, tn]T with yn(a) = c, yn(tn) = β(tn) andα(t) ≤ yn(t) ≤ β(t) on
[a, tn]T, wheretn → ∞ asn → ∞. Thus, for any fixedn ≥ 1, ym(t) is a solution on
[a, tn]T satisfyingα(t) ≤ ym(t) ≤ β(t) for all m ≥ n. Hence, form ≥ n, the sequence
ym(t) is pointwise bounded on[a, tn]T.

We claim that{ym(t)} is equicontinuous on[a, tN ]T for any fixedN ≥ 1. Sincef
is continuous andym(t) ≤ β(t) for all t ∈ [a, tN ]T, there is constantKN > 0 such that
|y∆∆

m (t)| = |f(t, yσ
m(t))| ≤ KN for all t ∈ [a, tN ]T. It follows that∣∣y∆

m(t)− y∆
m(a)

∣∣ =

∫ t

a

y∆∆
m (s) ∆s

≤
∫ t

a

KN ∆s

= KN(t− a)

≤ KN(tN − a)

which gives that
|y∆

m(t)| ≤ |y∆
m(a)|+ |KN(tN − a)|.

Since{ym(t)} is uniformly bounded on[a, tN ]T for all m ≥ N , it follows that|y∆
m(a)| ≤

LN for someLN > 0 and allm ≥ N . Consequently,

|y∆
m(t)| ≤ LN + |KN(tN − a)| =: MN ,

and so,

|ym(t)− ym(s)| =
∣∣∣∣∫ t

s

y∆
m ∆s

∣∣∣∣ ≤ MN |t− s| < ε

for all t, s ∈ [a, tN ]T provided|t− s| < δ =
ε

MN

. Hence the claim holds.

So by Ascoli–Arzela and a standard diagonalization argument,{ym(t)} contains a
subsequence which converges uniformly on all compact subintervals[a, tN ]T of [a,∞)T
to a solutiony(t), which is the desired solution of (2.2) that satisfiesα(t) ≤ y(t) ≤ β(t)
for all t ∈ [a,∞)T.
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3 Main Results

In this section we give four results concerning the oscillatory behavior of

y∆∆(t) + q(t)y(τ(t)) = 0 (1.1)

on the time scale[t0,∞)T wheresup T = ∞ andq ∈ Crd ([0,∞)T, [0,∞)). These are
Theorems 3.1 and 3.9 and Corollaries 3.4 and 3.7.

Theorem 3.1.Assume that the equation

y∆∆ + λ
τ(t)

σ(t)
q(t)yσ(t) = 0 (3.1)

is oscillatory on[t0,∞)T for some0 < λ < 1. Then all solutions of(1.1)are oscillatory.

Proof. Suppose, to the contrary, that (1.1) has an eventually positive solutionu. That is,
sinceτ(t) →∞ ast →∞, there existsT ∈ [t0,∞)T such thatu(t) > 0 andu(τ(t)) >
0 for t ≥ T . As q(t) ≥ 0 on [t0,∞)T , we have

u∆∆(t) = −q(t)u(τ(t)) ≤ 0 for all t ≥ T, (3.2)

and sou∆ decreases to a limit which must be nonnegative. In fact, we must have
u∆(t) > 0 on [T,∞)T. Indeed, ifu∆(t1) = 0 for somet1 > T , thenu∆(t) ≡ 0
on [t1,∞)T. Consequently, from (1.1) we would haveq(t) ≡ 0 on [t1,∞)T, since
u(τ(t)) > 0 on [T,∞)T, contradicting the fact that (3.1) is oscillatory. So we have

u(t) > 0, u∆(t) > 0, u∆∆(t) ≤ 0 on [T,∞)T.

For any0 < k < 1 there is aTk ≥ T such that

u(τ(t)) ≥
(

τ(t)− T

σ(t)− T

)
uσ(t) ≥ k

τ(t)

σ(t)
uσ(t), t ≥ Tk

by Lemma 2.1. It follows that

u∆∆(t) + k
τ(t)

σ(t)
q(t)uσ(t) ≤ 0, t ≥ Tk. (3.3)

Let z(t) =
u∆(t)

u(t)
andQ(t) = k

τ(t)

σ(t)
q(t). Also, let

S[z] =
z2

1 + µ(t)z
.

Then

1 + µ(t)z(t) = 1 + µ(t)
u∆(t)

u(t)
> 0
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for t ≥ T and

z∆ + Q + S(z) =
uu∆∆ − (u∆)2

uuσ
+ Q +

(
u∆

u

)2
1

1 + µu∆

u

=
uu∆∆ − (u∆)2

uuσ
+ Q +

(
u∆

u

)2
u

u + µu∆

=
uu∆∆ − (u∆)2

uuσ
+ Q +

(u∆)2

uuσ

=
u∆∆

uσ
+ Q

≤ 0

by (3.2). Hence, by [7, Lemma 1.1],u∆∆ + Quσ = 0 is nonoscillatory. Choosing

0 < k < 1 such thatk > λ, we haveQ(t) > λ
τ(t)

σ(t)
q(t) =: R(t). By the Sturm–

Picone comparison theorem [8, Lemma 6], we therefore haveu∆∆ + R(t)uσ(t) = 0 is
nonoscillatory. This contradiction proves the theorem.

Before we give the first corollary of Theorem 3.1 we prove the following.

Theorem 3.2. Assume there is at∗ ≥ a ∈ T and au ∈ C1
rd[t∗,∞) such thatu(t) > 0

on [t∗,∞)T and ∫ ∞

t∗

{q(t)[uσ(t)]2 − [u∆(t)]2}∆t = ∞.

Then the second-order dynamic equation

y∆∆(t) + q(t)yσ(t) = 0 (3.4)

is oscillatory on[a,∞)T.

Proof. We prove this theorem by contradiction. So assume (3.4) is nonoscillatory on
[a,∞)T. By [4, Theorem 4.61],y is a solution of (3.4) which is dominant at∞ such
that fort∗ ≥ a, sufficiently large,∫ ∞

t∗

∆t

y(t)yσ(t)
< ∞,

and we may assumey(t) > 0 on [t∗,∞)T. Let t∗ andu be as in the statement of this
theorem. LetT =max{t∗, t∗}; then let

z(t) :=
y∆(t)

y(t)
, t ≥ T.
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It follows that

z∆(t) =
y∆∆(t)y(t)− (y∆(t))2

y(t)yσ(t)

= −q(t)yσ(t)

yσ(t)
−

(
y∆(t)

y(t)

)2
y(t)

yσ(t)

= −q(t)− z2(t)
y(t)

[y(t) + µ(t)y∆(t)]

= −q(t)− z2(t)

1 + µ(t)z(t)

and
1 + µ(t)z(t) > 0 for all t ≥ T.

Then by [4, Theorem 4.55], we have fort ≥ T

(zu2)∆(t)

= [u∆(t)]2 − q(t)u2(σ(t))−

{
z(t)u(σ(t))√
1 + µ(t)z(t)

−
√

1 + µ(t)z(t)u∆(t)

}2

≤ [u∆(t)]2 − q(t)u2(σ(t)).

Integrating fromT to t, we obtain

z(t)u2(t) ≤ z(T )u2(T )−
∫ t

T

{
q(t)u2(σ(t))− [u∆(t)]2

}
∆t

which implies
lim
t→∞

z(t)u2(t) = −∞.

However, then there is aT1 ≥ T such that fort ≥ T1

z(t) =
y∆(t)

y(t)
< 0.

This implies thaty∆(t) < 0 for t ≥ T1, and hencey is decreasing on[T1,∞)T. However,∫ ∞

T1

1 ∆s = y(T1)y
σ(T1)

∫ ∞

T1

1

y(T1)yσ(T1)
∆s

≤ y(T1)y
σ(T1)

∫ ∞

T1

1

y(s)yσ(s)
∆s

< ∞,

which is a contradiction.
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The following example is illustrative.

Example 3.3. If a > 0 and ∫ ∞

a

σα(t)q(t) ∆t = ∞,

where0 < α < 1, theny∆∆ + q(t)yσ = 0 is oscillatory on[a,∞)T. We will show
that this follows from Theorem 3.2. In the Pötzsche chain rule [4, Theorem 1.90], let
g(t) = t andf(t) = t

α
2 , for 0 < α < 1. Then withu(t) = (f◦g)(t) = t

α
2 , we have

u∆(t) = (f◦g)∆(t) =

{∫ 1

0

α

2
(t + hµ(t) · 1)

α−2
2 dh

}
· 1

=
α

2

∫ 1

0

(t + hµ(t))
α−2

2 dh

≤ α

2

∫ 1

0

t
α−2

2 dh

=
α

2
t

α−2
2

sinceα− 2 < 0. Therefore, it follows that(u∆(t))2 ≤ α2

4
tα−2 for all t. Hence,

∫ ∞

a

{
q(t)[uσ(t)]2 − [u∆(t)]2

}
∆t ≥

∫ ∞

a

{
q(t)σα(t)− α2

4
tα−2

}
∆t = ∞

since0 < α < 1 implies ∫ ∞

a

tα−2 ∆t < ∞.

Thusy∆∆ + q(t)yσ = 0 is oscillatory on[a,∞)T by Theorem 3.2.

As a corollary to Theorem 3.1, we have the following.

Corollary 3.4. All solutions of

y∆∆ + q(t)y(τ(t)) = 0 (1.1)

are oscillatory in case either of the following holds:

(i)
∫ ∞

(σ(t))α−1τ(t)q(t) ∆t = ∞ for someα ∈ (0, 1)

(ii) lim inf
t→∞

t

∫ ∞

t

τ(t)

σ(t)
q(t) ∆t >

1

4
andµ(t) is bounded.
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Proof. If (i) holds, then for anyλ > 0,
∫ ∞

σα(t)λ
τ(t)

σ(t)
q(t) ∆t = ∞. By Example 3.3,

y∆∆ + λ
τ(t)

σ(t)
q(t)yσ(t) = 0 is oscillatory since0 < α < 1. Hence, by Theorem 3.1, all

solutions ofy∆∆ + q(t)y(τ(t)) = 0, equation (1.1), are oscillatory.
Next assume (ii) holds. Then by [12, Theorem 4],

y∆∆ +
τ(t)

σ(t)
q(t)yσ(t) = 0

is oscillatory. Sinceµ(t) is bounded, we have thaty∆∆ +
τ(t)

σ(t)
q(t)y(τ(t)) = 0 is

oscillatory by [14, Theorem 2.1] withf(t) = t. By the Sturm–Picone comparison
theorem [8, Lemma 6], we have (1.1) is oscillatory since0 < τ(t) ≤ t ≤ σ(t).

To prove our second corollary of Theorem 3.1, we will use the method of upper and
lower solutions and the following lemma.

Lemma 3.5. If ∫ ∞
τ(t)q(t)∆t = ∞, (3.5)

then every bounded solution of equation(3.1) is oscillatory on[t0,∞)T.

Proof. Suppose that there exists an eventually positive and bounded solutiony of (3.1).
Then there existsT ∈ T such that

y(t) > 0, y∆(t) > 0, y∆∆(t) ≤ 0 for all t ≥ T ≥ t0,

and without loss of generality, there existα, β ∈ R such that

0 < α < y(t) < β for all t ≥ T.

Let Y (t) = ty∆(t). Then

Y (t) = Y (T ) +

∫ t

T

Y ∆(s) ∆s

= Y (T ) +

∫ t

T

{
y∆(s) + σ(s)y∆∆(s)

}
∆s

= Y (T ) +

∫ t

T

{
y∆(s)− σ(s)λ

τ(s)

σ(s)
q(s)yσ(s)

}
∆s

= Y (T ) + y(t)− y(T )− λ

∫ t

T

τ(s)q(s)yσ(s) ∆s

≤ Y (T ) + β − y(T )− λ

∫ t

T

τ(s)q(s)yσ(s) ∆s

≤ Y (T ) + β − y(T )− λα

∫ t

T

τ(s)q(s) ∆s

→ −∞ ast →∞,
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i.e., there is a constantM > 0 such that

y∆(t) ≤ −M

t
for t ≥ T̃

for someT̃ ≥ T , and this implies thatlim
t→∞

y(t) = −∞ by [3, Example 5.15], contra-

dictingy(t) > 0 for all t ≥ T . Thus every bounded solution of

y∆∆ + λ
τ(t)

σ(t)
q(t)yσ(t) = 0

is oscillatory.

Example 3.6.Consider the delay dynamic equation

y∆∆(t) +
1

tτ(t)
y(τ(t)) = 0 for t ≥ t0. (3.6)

It follows that ∫ t

t0

τ(s)q(s)∆s =

∫ t

t0

∆s

s
→∞ ast →∞.

Therefore, by Lemma 3.5, every bounded solution of (3.6) oscillates on[t0,∞).

We can now state and prove our second corollary of Theorem 3.1.

Corollary 3.7. All bounded solutions of the linear second-order dynamic equation

y∆∆ + q(t)y(τ(t)) = 0 (1.1)

are oscillatory in case(3.5)holds.

Proof. Let u be a bounded nonoscillatory solution of (1.1) withu(t) > 0 andu(τ(t)) >
0 for t ≥ T . Sinceu∆∆(t) ≤ 0 for all t, we haveu∆(t) > 0 on [T,∞)T. As in the proof
of Theorem 3.1, for any0 < k < 1 there exists aTk ≥ T such that

u∆∆(t) + k
τ(t)

σ(t)
q(t)uσ(t) ≤ 0

for t ≥ T ≥ Tk. Let α(t) = u(T ) andβ(t) = u(t). Then

f(t, ασ(t)) = −λ
τ(t)

σ(t)
q(t)u(T ) ≤ 0 = α∆∆(t)

and

f(t, βσ(t)) = −λ
τ(t)

σ(t)
q(t)uσ(t) ≥ β∆∆(t) with k = λ.
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Soα, β are lower and upper solutions, respectively, of

y∆∆ + λ
τ(t)

σ(t)
q(t)yσ(t) = 0. (3.1)

As u is increasing,α(t) ≤ β(t) on [Tk,∞)T. Then by Theorem 2.4, there is a solu-
tion y(t) of (3.1) satisfyingu(T ) ≤ y(t) ≤ u(t) on [Tk,∞)T. As u is bounded,y is
a bounded nonoscillatory solution of (3.1) . This is a contradiction to Lemma 3.5 and
proves the theorem.

In order to prove our last result, which in an extension of [2, Theorem 4.4], we need
the following lemma.

Lemma 3.8. Lety(t) be a positive solution of(1.1)defined on[T,∞)T for someT > 0
that satisfiesy∆(t) > 0 andy∆∆(t) ≤ 0 on [T,∞)T. If (3.5)holds, then there exists a
T1 ≥ T such that

y(t)

y∆(t)
≥ t and

y(t)

t
is decreasing (3.7)

on [T1,∞)T.

Proof. Let y(t) be as in the statement of the lemma and assume (3.5) holds. Also let
Y (t) := y(t)− ty∆(t). ThenY ∆(t) = −σ(t)y∆∆(t) ≥ 0 for t ∈ [T,∞)T. This implies
thatY (t) is increasing on[T,∞)T.

We claim there is aT1 ∈ [T,∞) such thatY (t) ≥ 0 on [T1,∞)T. If not, then
Y (t) < 0 on [T1,∞)T. Therefore(

y(t)

t

)∆

=
ty∆(t)− y(t)

tσ(t)
= − Y (t)

tσ(t)
> 0, t ∈ [T1,∞)T

which implies that
y(t)

t
is increasing on[T1,∞)T. ChooseT2 ∈ [T1,∞)T such that

τ(t) ≥ τ(T2) for t ≥ T2. Then

y(τ(t))

τ(t)
≥ y(τ(T2))

τ(T2)
=: D > 0,

which givesy(τ(t)) ≥ Dτ(t) for t ≥ T2. Now by integrating both sides of (1.1) from
T2 to t, we obtain

y∆(t)− y∆(T2) +

∫ t

T2

q(s)y(τ(s))∆s = 0.

This implies that

y∆(T2) > D

∫ t

T2

q(s)τ(s)∆s,



52 Raegan Higgins

which contradicts (3.5). Hence there is aT1 ∈ [T,∞)T such thatY (t) ≥ 0 on [T1,∞)T,
and the first part of (3.7) holds. Moreover,(

y(t)

t

)∆

=
ty∆(t)− y(t)

tσ(t)
= − Y (t)

tσ(t)
≤ 0, t ∈ [T1,∞)T,

and we have that
y(t)

t
is decreasing on[T1,∞)T. This completes the proof of the lemma.

Theorem 3.9.Assume(3.5)holds. If

lim
t→∞

(
t

∫ ∞

t

q(s)
τ(s)

σ(s)
∆s

)
= ∞, (3.8)

then every solution of(1.1) is oscillatory on[t0,∞)T.

Proof. To the contrary, supposey is a nonoscillatory solution of (1.1). Then there exists
T ∈ T such that

y(t) > 0, y∆(t) > 0, and y∆∆(t) ≤ 0 for all t ≥ T ≥ t0.

It follows that fors ≥ t ≥ T we have∫ s

t

q(u)y(τ(u)) ∆u = −
∫ s

t

y∆∆(u) ∆u = y∆(t)− y∆(s) ≤ y∆(t)

and hence ∫ ∞

t

q(u)y(τ(u)) ∆u ≤ y∆(t).

From the above inequality and Lemma 3.8, it follows that for sufficiently larget ∈ T

y(t) ≥ ty∆(t)

≥ t

∫ ∞

t

q(u)y(τ(u)) ∆u

≥ t

∫ ∞

t

q(u)
τ(u)

u
y(u) ∆u

≥ y(t)

(
t

∫ ∞

t

q(u)
τ(u)

u
∆u

)
≥ y(t)

(
t

∫ ∞

t

q(u)
τ(u)

σ(u)
∆u

)
and so

1 ≥ t

∫ ∞

t

q(u)
τ(u)

σ(u)
∆u,

a contradiction to (3.8). This completes the proof.
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Example 3.10.Let h > 0 andT = hZ = {hk : k ∈ Z}. In this case (1.1) becomes

y(t + 2h)− 2y(t + h) + y(t) + h2q(t)y(τ(t)) = 0. (3.9)

Assume that

lim
b→∞

b/h−1∑
k=t0/h

hτ(hk)q(hk) = ∞.

Then every bounded solution of (3.9) oscillates on[t0,∞)T. Additionally, if,

lim
n→∞

h2n lim
b→∞

b/h−1∑
k=n

q(hk)
τ(hk)

h + k
= ∞

 ,

then every solution of (3.9) is oscillatory on[t0,∞)T.

4 Conclusion and Future Directions

In this paper we have obtained sufficient conditions for the oscillatory behavior of

y∆∆(t) + q(t)y(τ(t)) = 0.

This was done by comparing nonoscillatory solutions of the delay dynamic equation
with the solutions of a corresponding linear dynamic equation and then using known
properties of the linear equation to obtain a desired contradiction.

Possibilities for further exploration include changing the leading term to(p(t)y∆)∆

wherep(t) > 0 on the time scale interval[t0,∞)T and
∫ ∞ ∆t

p(t)
= ∞, and replacing

the delayτ(t) with the advanceξ : T → T whereσ(t) ≤ ξ(t) and lim
t→∞

ξ(t) = ∞.
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