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Abstract. In this paper, we consider the second-order nonlinear dynamic

equation (
p(t)y∆(t)

)∆
+ f(t, yσ)g(p(t)y∆) = 0,

on a time scale T. Our goal is to establish necessary and sufficient conditions
for the existence of certain types of solutions of this dynamic equation. We

apply results from the theory of lower and upper solutions for related dynamic
equations and use several results from calculus.

1. Introduction. We are concerned with the asymptotic behavior of the solutions
of the following second-order nonlinear dynamic equation:(

p(t)y∆
)∆

+ f(t, yσ)g(p(t)y∆) = 0, (1)
where sup T =∞. We shall assume the following conditions hold:
(A0) f, fy : T×R→ R are continuous in y and rd-continuous in t and g : R→ R is
continuous.
(A1) f(t, 0) = 0, t ∈ [0,∞)T.
(A2) fy(t, y) ≥ 0 and is nondecreasing in y for t ∈ [0,∞)T and y ≥ 0.
(A3) g(v) > 0 for all v ≥ 0.
(A4) p : (0,∞)T → (0,∞)T is right-dense continuous and delta-differentiable, has a

bounded derivative, and satisfies
∫ ∞ ∆t

p(t)
=∞.

We shall study (1) by considering the equation(
p(t)y∆

)∆
+ fy(t, α)y = 0, (2)

where α is some real constant depending on the solutions of (1). In this paper, we
intend to use the method of upper and lower solutions to obtain oscillation criteria
for (1) under certain conditions. Our results generalize those given in Erbe [12].

As a way to unify a discussion of many types of problems for equations in the
continuous and discrete cases, the theory of time scales was introduced by Stefan
Hilger [17]. Not only does this unify the theories of differential equations and differ-
ence equations, but it also extends these classical situations to cases “in between”–
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e.g. to the so-called q−difference equations. Moreover, the theory can be applied
to other different types of time scales. Since its introduction, many authors have
expounded on various aspects of this new theory. A book on the subject of time
scales by Bohner and Peterson [8] summarizes and organizes much of time scale
calculus.

In recent years, there has been an increasing interest in studying the asymptotic
behavior solutions of dynamic equations on a time scale (i.e., a closed subset of the
real lin R). This has lead to many attempts to harmonize the oscillation theory for
the continuous and the discrete cases, to include them in one comprehensive theory,
and to extend the results to more general time scales. We refer the reader to the
papers [1], [2], [4], [6], [10], [11], [13], [15], [16], and the references cited therein. To
illustrate some of the results, we mention the work of Erbe, Peterson, and Saker
[15] who considered the nonlinear dynamic equation(

p(t)y∆(t)
)∆

+ q(t)(f ◦ xσ) = 0, t ∈ T, (3)

where p, q are positive real-valued right-dense continuous functions and f : R→ R
is continuous and satisfies

yf(y) > 0 and |f(y)| ≥ K|y| for y 6= 0 for some K > 0.

By means of generalized Riccati transformation techniques and generalized expo-
nential functions, the authors give some oscillation criteria for the above equation.

In Bohner and Saker [9], the authors considered (3) and used Riccati techniques to
give some sufficient conditions for oscillation when

∫∞ ∆t
p(t)∆t converges or diverges.

They obtained sufficient conditions which guarantee that every solution oscillates
or converges to zero.

2. Preliminary results. In this section, we state fundamental results needed to
prove our main results. We begin by introducing the auxiliary function

P (t, a) =
∫ t

a

1
p(s)

∆s for a ∈ T with a < t,

and with the following theorem which is a generalization of [20, Theorem 3].

Theorem 2.1. Let f(t, y) be a continuous function of the variables t ≥ t0 and
|y(t)| <∞. Assume that for all t > 0 and y 6= 0, yf(t, y) > 0, and for each fixed t,
f(t, y) is nondecreasing in y for y > 0. Then a necessary condition for(

p(t)y∆
)∆

+ f(t, yσ) = 0, t ≥ t0 > 0, (4)

to have a bounded nonoscillatory solution is that∫ ∞
P (t, a)f(t, c)∆t <∞, (5)

for some constant c > 0.

Proof. Suppose y is a bounded eventually positive solution of (4). So there exists
T ∈ [t0,∞)T such that y(t) > 0 for t ≥ T . As f(t, y) > 0 for all y > 0,

(
p(t)y∆

)∆
is eventually negative. So p(t)y∆(t) is decreasing and tends to a limit L that is
positive, zero, negative, or −∞. If L < 0 or if L = −∞, p(t)y(t) would be eventually
negative. Hence lim

t→∞
p(t)y∆(t) = L with 0 ≤ L <∞.
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Integrating (4) from s to T1, we obtain

p(T1)y∆(T1)− p(s)y∆(s) +
∫ T1

s

f(r, yσ(r))∆r = 0.

It follows that

y∆(s) ≥ 1
p(s)

∫ ∞
s

f(r, yσ(r))∆r.

Integrating again for T < t1 < t, we obtain

y(t)− y(t1) ≥
∫ t

t1

1
p(s)

∫ ∞
s

f(r, yσ(r))∆r∆s.

If we let

I1(t) :=
∫ t

t1

1
p(s)

∫ ∞
s

f(r, yσ(r))∆r∆s

and

I2(t) :=
∫ t

t1

P (r, t1)f(r, yσ(r))∆r +
∫ ∞
t

P (t, t1)f(r, yσ(r))∆r,

we obtain I1(t) ≥ I2(t). Consequently, for t ≥ t1 ≥ T , we have

y(t)− y(t1) =
∫ t

t1

y∆(s)∆s

≥ I1(t)
≥ I2(t)

≥
∫ t

t1

P (r, t1)f(r, yσ(r))∆r,

and so

y(t) >
∫ t

t1

P (r, t1)f(r, yσ(r))∆r.

Since y(t) ≤ M for some M > 0 and
∫ t

t1

P (r, t1)f(r, yσ(r))∆r is an increasing

function of t, we have ∫ ∞
t1

P (r, t1)f(r, yσ(r))∆r <∞.

By the monotonicity of f , we have∫ ∞
P (r, t1)f (r, y(t1)) ∆r <∞.

By letting c = y(t1), we obtain the desired result. This completes the proof.

In order to prove our main results, we need a method of studying separated
boundary value problems (SBVPs). Namely, we will define functions called upper
and lower solutions that not only imply the existence of a solution of a SBVP but
also provide bounds on the location of the solution. Consider the SBVP

− (p(t)x∆)∆ + q(t)xσ = f(t, xσ), t ∈ [a, b]κ
2

(6)
x(a) = A, x(b) = B, (7)
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where the functions f ∈ C([a, b]κ
2 × R,R) and p, q ∈ Crd([a, b]κ

2
) are such that

p(t) > 0 and q(t) ≥ 0 on [a, b]κ
2
. We define the set

D1 := {x ∈ X : x∆ is continuous and px∆ is delta differentiable on [a, b]κ

and (px∆)∆ is rd-continuous on [a, b]κ
2
},

where the Banach space X = C([a, b]) is equipped with the norm ‖ · ‖ defined by

‖x‖ := max
t∈[a,b]T

|x(t)| for all x ∈ X.

A function x is called a solution of the equation −
(
p(t)y∆

)∆ +q(t)yσ = 0 on [a, b]κ
2

if x ∈ D1 and the equation −
(
p(t)x∆

)∆ + q(t)xσ = 0 holds for all t ∈ [a, b]κ
2
. Next

we define for any u, v ∈ D1 the sector [u, v]1 by

[u, v]1 := {w ∈ D1 : u ≤ w ≤ v}.

Definition 2.2. [7, Definition 6.1] We call α ∈ D1 a lower solution of the SBVP
(6)-(7) on [a, b] provided

−
(
pα∆

)∆
(t) + q(t)ασ(t) ≤ f(t, ασ(t)) for all t ∈ [a, b]κ

2

and
α(a) ≤ A, α(b) ≤ B.

Similarly, β ∈ D1 is called an upper solution of the SBVP (6)-(7) on [a, b] provided

−
(
pβ∆

)∆
(t) + q(t)βσ(t) ≥ f(t, βσ(t)) for all t ∈ [a, b]κ

2

and
β(a) ≥ A, β(b) ≥ B.

Theorem 2.3. [7, Theorem 6.5] Assume that there exists a lower solution α and
an upper solution β of the SBVP (6)-(7) such that

α(t) ≤ β(t) for all t ∈ [a, b].

Then the SBVP (6)-(7) has a solution x ∈ [α, β]1 on [a, b].

The following is an extension of the previous theorem to [a,∞)T.

Theorem 2.4. Assume that there exists a lower solution α and an upper solution
β of (6) with α(t) ≤ β(t) for all t ∈ [a,∞)T. Then

−
(
p(t)x∆

)∆
+ q(t)xσ = f(t, xσ) (8)

has a solution x with x(a) = A and x ∈ [α, β]1 on [a,∞)T.

Proof. It follows from Theorem 2.3 that for each n ≥ 1 there is a solution xn(t) of
(6) on [a, tn]T with

xn(a) = A, xn(tn) = β(tn), and α(t) ≤ xn(t) ≤ β(t)

on [a, tn]T, where {tn} is such that lim
n→∞

tn =∞. Thus, for any fixed n ∈ N, xm(t)

is a solution on [a, tn]T satisfying α(t) ≤ xm(t) ≤ β(t) for all m ≥ n. Hence, for
m ≥ n, the sequence xm(t) is pointwise bounded on [a, tn]T.

We claim that {xm(t)} is equicontinuous on [a, tN ]T for any fixed N ≥ 1. As q
is right-dense continuous, it is regulated. It follows that q is bounded on [a, tN ]T,
and so there exists a constant QN > 0 such that |q(t)| ≤ QN for all t ∈ [a, tN ]T.
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Furthermore, since f is continuous and xm(t) ≤ β(t) for all t ∈ [a, tN ]T, there is a
constant KN > 0 such that∣∣[p(t)x∆

m(t)]∆
∣∣ = |q(t)xσm(t)− f(t, xσm(t))|
≤ q(t)|xσm(t)|+ |f(t, xσm(t))|
≤ QN |xσm(t)|+KN

≤ QN‖β‖+KN

=: MN

for all t ∈ [a, tN ]T. It follows that∣∣p(t)x∆
m(t)− p(a)x∆

m(a)
∣∣ =

∫ t

a

[p(s)x∆
m(s)]∆ ∆s

≤ MN (t− a)
≤ MN (tN − a),

which gives

p(t)|x∆
m(t)| = |p(t)x∆

m(t)| ≤ |p(a)x∆
m(a)|+ |MN (tN − a)|.

Since {p(t)xm(t)} is uniformly bounded on [a, tN ]T for all m ≥ N , it follows that
|p(a)x∆

m(a)| ≤ LN for some LN > 0 and all m ≥ N . Consequently,∣∣p(t)x∆
m(t)

∣∣ ≤ LN + |MN (tN − a)| := CN ,

and, immediately, we have

|x∆
m(t)| ≤ CN

p(t)
≤ CNPN for all t ∈ [a, tN ]T

since 1/p(t) is continuous on the compact interval [a, tN ]T. Consequently,

|xm(t)− xm(s)| =
∣∣∣∣∫ t

s

x∆
m(u) ∆u

∣∣∣∣ ≤ CNPN |t− s| < ε

for all t, s ∈ [a, tN ]T provided |t− s| < δ =
ε

CNPN
. Hence the claim holds.

The Ascoli-Arzela theorem along with a diagonalization argument gives {xm(t)}
contains a subsequence which converges uniformly on all compact subintervals
[a, tN ]T of [a,∞)T to a solution x(t), which is the desired solution of (8) that satisfies
x ∈ [α, β]1 on [a,∞)T.

3. Main results. In this section, we establish necessary and sufficient conditions
for the existence of certain types of solutions of (1).

Theorem 3.1. Assume (A0)-(A4) hold and let α0 > 0. Furthermore, assume
P (σ(t), a)/P (t, a) is bounded. Then the following statements are equivalent:

(i) For each 0 < α < α0 there is a solution uα(t) of (1) satisfying
lim
t→∞

uα(t) = α.

(ii)
∫ ∞

P (σ(t), a)fy(t, α)∆t <∞ for all 0 < α < α0.

Proof. Assume
∫ ∞

P (σ(t), a)fy(t, α1)∆t =∞ for some 0 < α1 < α0 and let

α1 < β < α0. Let uβ be the corresponding solution of (1) with lim
t→∞

uβ(t) = β.
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Without loss of generality, assume uβ(t) > 0 on [0,∞)T. Choose δ > 0 such that
α1 + δ < β and let T ≥ 0 be such that uσβ(t) ≥ α1 + δ for all t ≥ T . Then for t ≥ T

(
p(t)u∆

β

)∆
= −f(t, uσβ)g(p(t)u∆

β ) ≤ 0,

and so p(t)u∆
β (t) is nonincreasing for t ≥ T .

We claim that p(t)u∆
β (t) > 0 on [T,∞)T. If not, there is a t1 ≥ T such that

p(t1)u∆
β (t1) ≤ 0. Then

p(t)u∆
β (t) ≤ p(t1)u∆

β (t1), t ∈ [t1,∞)T,

and therefore

u∆
β (t) ≤

p(t1)u∆
β (t1)

p(t)
, t ∈ [t1,∞)T.

Integrating, we obtain

uβ(t)− uβ(t1) =
∫ t

t1

u∆
β (s)∆s ≤ p(t1)u∆

β (t1)
∫ t

t1

∆s
p(s)

→ −∞

as t→∞, which implies that uβ(t) is eventually negative. This contradiction proves
the claim.

Furthermore, p(t)u∆
β (t) decreases to 0 on [T,∞)T. Indeed, let L := lim

t→∞
p(t)u∆

β (t)

and assume L > 0. Then p(t)u∆
β (t) > L − ε for all large t and for some ε > 0. It

follows that

u∆
β (t) >

L− ε
p(t)

for all large t,

and so

uβ(t)− uβ(T ) >
∫ t

T

L− ε
p(t)

∆s for all large t.

Consequently, uβ(t)→∞ as t→∞, which is a contradiction.
By applying the Mean Value Theorem, we obtain

f(t, uσβ(t))− f(t, α1)
uσβ(t)− α1

= fy(t, η(t)) for some η(t) ∈ (α1, u
σ
β(t)).

Now by the monotonicity of fy (condition (A2)), we have

fy(t, α1) ≤ fy(t, η(t))

=
f(t, uσβ(t))− f(t, α1)

uσβ(t)− α1

≤
uσβ(t)

uσβ(t)− α1

f(t, uσβ(t))
uσβ(t)

≤ β

δ

f(t, uσβ(t))
uσβ(t)
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for t ≥ T as uβ(t) ≤ β on [T,∞)T. Since lim
t→∞

p(t)u∆
β (t) = 0, there exists T1 ≥ T

such that g(p(t)u∆
β (t)) ≥ g(0)

2
> 0 for all t ≥ T1. Hence, for t ≥ T1, we have

(
p(t)u∆

β (t)
)∆

= −f(t, uσβ(t))g(p(t)u∆
β (t))

≤ −fy(t, α1)
β

δuσβ(t)
g(0)

2
= −kfy(t, α1)uσβ(t),

where k =
δg(0)

2β
. Also,

(
p(t)α∆

1

)∆ = 0 ≥ −kfy(t, α1)α1. Hence, by Theorem 2.4,

there is a solution z(t) of
(
p(t)z∆

)∆ + kfy(t, α1)zσ = 0 with
0 < α1 ≤ z(t) ≤ uβ(t) ≤ β on [T,∞)T. By Theorem 2.1, it follows that∫ ∞

kP (t, a)fy(t, α1)∆t <∞.

Since
P (σ(t), a)
P (t, a)

is bounded, we have

∫ ∞
P (σ(t), a)fy(t, α1)∆t <∞,

which is the desired contradiction.
Conversely, let 0 < α < α0 be such that∫ ∞

P (σ(t), a)fy(t, α)∆t <∞

for a ∈ T with a < t, and let

M = max{g(v) : 0 ≤ v ≤ α}.

Choose T ≥ 0 such that∫ ∞
T

[P (σ(s), a)− P (T, a)]fy(s, α)∆s <
1
M

and
∫ ∞
T

fy(s, α)∆s <
1
M
.

We shall now define a sequence of functions on [T,∞)T in the following manner:
Let y0(t) = α on [T,∞)T. Now for t ≥ T

0 ≤
∫ ∞
t

[P (σ(s), a)− P (t, a)]f(s, α)g(0)∆s

=
∫ ∞
t

[P (σ(s), a)− P (t, a)][f(s, α)− f(s, 0)]g(0)∆s

= α

∫ ∞
t

[P (σ(s), a)− P (t, a)]fy(s, η(s))g(0)∆s, η(s) ∈ (0, α)

≤ αM

∫ ∞
t

[P (σ(s), a)− P (t, a)]fy(s, α)∆s

≤ αM

∫ ∞
T

[P (σ(s), a)− P (T, a)]fy(s, α)∆s

< α.
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By defining y1(t) := α −
∫∞
t

[P (σ(s), a) − P (t, a)]f(s, α)g(0)∆s, t ≥ T , we have
0 ≤ y1(t) < α. Differentiating y1, we obtain

y∆
1 (t) =

1
p(t)

∫ ∞
t

f(s, α)g(0)∆s.

It follows that for t ≥ T

p(t)y∆
1 (t) =

∫ ∞
t

f(s, α)g(0)∆s

≤ αM

∫ ∞
t

fy(s, η(s))∆s, η(s) ∈ (0, α)

≤ αM

∫ ∞
T

fy(s, η(s))∆s

< α.

Proceeding inductively, we define for all m ≥ 1

ym+1(t) := α−
∫ ∞
t

[P (σ(s), a)− P (t, a)]f(s, yσm(s))g(p(s)y∆
m(s))∆s, t ≥ T, (9)

and obtain 0 ≤ ym(t), p(t)y∆
m(t) < α for all m ≥ 1.

We claim that {ym(t)}∞m=0 is equicontinuous on [T, TN ]T for any fixed N ≥ 1.
Since p(t)y∆

m(t) < α for all m ≥ 1 on [T, TN ]T, we have

0 ≤ |y∆
m(t)| ≤ α

p(t)
≤ αPN for all t ∈ [T, TN ]T,

where PN = max
{

1
p(t)

: t ∈ [T, TN ]T

}
. Consequently,

|ym(t)− ym(s)| =
∣∣∣∣∫ t

s

y∆
m(u)∆u

∣∣∣∣ ≤ αPN |t− s| < ε1

for all t, s ∈ [T, TN ]T provided |t − s| < δ1 =
ε1
αPN

. Hence the claim holds. The

Ascoli-Arzela theorem along with a diagonalization argument yields a uniformly
convergent subsequence {ymk

(t)} on compact subintervals [T, TN ]T of [T,∞)T. Let

uα(t) := lim
k→∞

ymk
(t),

for t ∈ [T,∞)T. Furthermore, from the definition of ym+1 given by (9), one can
show that

y∆∆
m+1(t) = − 1

pσ(t)
[
p∆(t)y∆

m+1(t) + f(t, yσm(t))g(p(t)y∆
m(t))

]
for all m ≥ 1. Taking the absolute value of both sides, we find that∣∣y∆∆

m+1(t)
∣∣ ≤ PN [αPN |p∆(t)|+M |f(t, yσm(t))|]

on [T, TN ]T. Since f is right-dense continuous, it is regulated. It follows that f is
bounded on [T, TN ]T, and so there is a constant FN > 0 such that |f(t, yσm(t))| ≤ FN
for all t ∈ [T, TN ]T and all m ≥ N . Also, since p∆(t) is bounded, we have∣∣y∆∆

m+1(t)
∣∣ ≤ PN [αPNP +MFN ] =: LN
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on [T, TN ]T for all m ≥ N , where P > 0 is such that |p∆(t)| ≤ P on (0,∞)T.
Consequently,

|y∆
m(t)− y∆

m(s)| =
∣∣∣∣∫ t

s

y∆∆
m (u)∆u

∣∣∣∣ ≤ LN |t− s| < ε2

for all t, s ∈ [T, TN ]T provided |t − s| < δ2 =
ε2
LN

. Therefore
{
y∆
m(t)

}
is equicon-

tinuous on [T, TN ]T. Using the Ascoli-Arzela theorem along with a diagonalization
argument, we obtain a subsequence

{
y∆
mk

}
that converges uniformly on compact

subintervals [T, TN ]T of [T,∞)T. It follows that y∆
mk

converges uniformly to u∆
α (t)

on compact subintervals of [T,∞)T, thereby yielding

lim
k→∞

f(t, yσmk
)g(p(t)y∆

mk
(t)) = f(t, uσα)g(p(t)y∆

α (t))

uniformly on compact subintervals of [T,∞)T. Replacing m in equation (9) by mk

and letting k →∞, we obtain

uα(t) = α−
∫ ∞
t

[P (σ(s), a)− P (t, a)]f(s, uσα(s))g(p(s)u∆
α (s))∆s

on [T,∞)T. It follows that uα(t) is a solution of (1). As lim
t→∞

uα(t) = α, the proof
is complete.

We continue with an example that shows how Theorem 3.1 can be applied.

Example 3.2. Consider the dynamic equation

(
ty∆(t)

)∆
+
y2(σ(t))

t2
∣∣ty∆(t)

∣∣ = 0 (10)

on T = [1,∞)Z. Here p(t) = t, f(t, y) =
y2

t2
, and g(v) = |v|. Let α0 > 0 be given.

We have that p : T→ T is right-dense continuous, delta-differentiable, and has a
bounded derivative. Also, ∫ ∞

1

∆
t

= lim
b→∞

b∑
t=1

1
t

=∞.

Hence (A4) holds.

With the choice of f , (A1) holds immediately. Then fy(t, y) =
2y
t2
≥ 0 and

fy(t, y) is strictly increasing for t ∈ T and y ≥ 0 since fyy(t, y) =
2
t2

> 0. Thus

(A2) holds. Furthermore, (A0) and (A3) hold.
Note that for any a ∈ T

P (σ(t), a)
P (t, a)

=

∑t+1
s=a

1
s∑t

s=a

1
s

= 1 +

1
t+ 1∑t
s=a

1
s

= 1 +
1

t+ 1
< 2, t ∈ T.
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We now have that all assumptions of Theorem 3.1 are satisfied. Additionally, for
all α > 0, we have∫ ∞

1

P (σ(t), a)fy(t, α) ∆t = lim
b→∞

b∑
t=1

(
t+1∑
s=a

1
s

)
2α
t2

< 2α lim
b→∞

S(b)
b∑
t=1

1
t2

< ∞,

where S(b) :=
b+1∑
s=a

1
s
< ln(b + 1). Since condition (ii) of Theorem 3.1 holds, we

conclude that there is a solution satisfying (i) for all 0 < α < α0.

As other examples of equations to which Theorem 3.1 applies, we have(
p(t)x∆

)∆
+ xet(x−α0)(1 + p(t)x∆) = 0 (11)

and (
p(t)x∆

)∆
+ xet(x

2−α2
0)+cp(t)x∆

(1 + (p(t)x∆)2) = 0 (12)
where c is an arbitrary real number. Then for 0 < α < α0, there is a solution uα(t)
of (11) with lim

t→∞
uα(t) = α, and for 0 < |α| < α0 there is a solution yα(t) of (11)

with lim
t→∞

yα(t) = α.

In [19] it is shown that y′′ + a(t)y2n+1 = 0, n ≥ 0, where a(t) ≥ 0 for t ≥ 0
and g(v) = 1 for all v, has solutions for which

lim
t→∞

y(t)
t

= α > 0 (13)

if and only if ∫ ∞
t2n+1a(t)dt <∞. (14)

We will show that an analogous form of (14) is sufficient for (13) when considering
the dynamic equation (1), and (13) is sufficient for an analogous form of (14) pro-
vided f(t, y) satisfies the following additional condition:

(A5) There exist positive real numbers c and λ such that lim inf
v→∞

f(t, v)
vfv(t, cv)

≥ λ > 0,

for all sufficiently large t.
Note that in the case of y′′ + a(t)y2n+1 = 0, c and λ may be any positive real
numbers with λc2n ≤ 1/(2n+ 1). We first establish the following result.

Lemma 3.3. Assume (A0)-(A4) hold and let there exist a real number β > 0 with∫ ∞
P (σ(t), a)fy(t, βP (σ(t), T ))∆t <∞.

Then there exist solutions of
(
p(t)y∆

)∆ + f(t, yσ(t))g(p(t)y∆) = 0, say y(t), such

that lim
t→∞

y(t)
P (t, a)

exists and is positive.

Proof. Let T > 0 be such that∫ ∞
T

P (σ(t), a)fy(t, βP (σ(t), T ))∆t <
1

2M
,
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where M = max{g(v) : 0 ≤ v ≤ β}. We define a solution of (1) by

p(T )u(T ) = 0, p(T )u∆(T ) = β,

and we assert that the solution satisfies p(t)u∆(t) ≥ β

2
for t ≥ T . Assume, on the

contrary, that there is a δ > 0 with δ < β/2 and a t1 > T with 0 < p(t1)u∆(t1) ≤ δ
and p(t)u∆(t) ≥ δ on [T, t1)T. Then for T ≤ t ≤ t1 we have

p(T )u∆(T ) = p(t)u∆(t) +
∫ t

T

f(s, uσ(s))g(p(s)u∆(s))∆s. (15)

Since
(
p(t)u∆(t)

)∆ ≤ 0 on [T, t1)T, we have

p(t)u∆(t) ≤ β on (T, t1)T (16)

and

u(t) ≤ β
∫ t

T

1
p(s)

∆s = βP (t, T ) ≤ βP (t, a) on [T, t1)T. (17)

Applying the Mean Value Theorem to (15) and the monotonicity of fy, we have

β = p(T )u∆(T ) = p(t)u∆(t) +
∫ t

T

f(s, uσ(s))g(p(s)u∆(s))∆s

≤ p(t)u∆(t) +M

∫ t

T

f(s, uσ(s))∆s

= p(t)u∆(t) +M

∫ t

T

[f(s, uσ(s))− f(s, 0)]∆s

= p(t)u∆(t) +M

∫ t

T

uσ(s)fu(s, η(s))∆s, 0 < η(s) < uσ(s)

≤ p(t)u∆(t) +Mβ

∫ t

T

P (σ(s), a)fu(s, uσ(s))∆s

≤ p(t)u∆(t) +Mβ

∫ t

T

P (σ(s), a)fu(s, βP (σ(s), T ))∆s

< p(t)u∆(t) +Mβ
1

2M

= p(t)u∆(t) +
β

2
.

Hence, p(t1)u∆(t1) >
β

2
, which is a contradiction. Thus, p(t)u∆(t) ≥ β

2
on [T,∞)T,

and so p(t)u(t) > 0 on [T,∞)T.
Since (p(t)u∆(t))∆ ≤ 0 on [T,∞)T, p(t)u∆(t) decreases on [T,∞)T. Hence

L := lim
t→∞

p(t)u∆(t) exists and is positive where β/2 ≤ L < β. By L’Hôpital’s Rule

[8, Theorem 1.120], the following limit

lim
t→∞

u(t)
P (t, a)

= lim
t→∞

u(t)
1/p(t)

= lim
t→∞

p(t)u∆(t)

exists and is positive.

We now show (13) is sufficient for an analogous form of (14) provided (A5) holds.
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Theorem 3.4. Assume conditions (A0)-(A5) hold. Then, (1) has a solution, say

y(t), such that lim
t→∞

y(t)
P (t, a)

exists and is positive, if and only if∫ ∞
P (σ(t), a)fy(t, βP (σ(t), a))∆t <∞ for some β > 0.

Proof. Let α > 0 and let y be solution of (1) with

lim
t→∞

y(t)
P (t, a)

= α.

Let T ≥ 0 be such that y(t) ≥ αP (t, a)
2

for t ≥ T and let

m := min{g(v) : 0 ≤ v ≤ p(T )y∆(T )}.
By condition (A5), there is a T1 ≥ T such that

f(t, yσ(t)) ≥ λyσ(t)fy(t, cyσ(t)) ≥ λ
αP (σ(t), a)

2
fy

(
t,
αcP (σ(t), a)

2

)
= kP (σ(t), a)fy

(
t,
αcP (σ(t), a)

2

)
for t ≥ T1, where k =

λα

2
. Since 0 < p(t)y∆(t) ≤ p(T )y∆(T ) for t ≥ T , we have

f(t, yσ(t))g(p(t)y∆(t)) ≥ mkP (σ(t), a)fy

(
t,
cαP (σ(t), a)

2

)
, t ≥ T1.

Therefore,

p(T1)y∆(T1) = p(t)y∆(t) +
∫ t

T1

f(s, yσ(s))g(p(s)y∆(s))∆s

≥ p(t)y∆(t) +mk

∫ t

T1

P (σ(s), a)fy

(
s,
cαP (σ(s), a)

2

)
.

Since lim
t→∞

p(t)y∆(t) > 0,∫ ∞
T1

P (σ(s), a)fy

(
s,
cαP (σ(s), a)

2

)
<∞,

and this proves the theorem.

Example 3.5. Consider the dynamic equation(
ty∆(t)

)∆
+
y2(σ(t))

t2
∣∣ty∆(t)

∣∣ = 0 (10)

on T = [1,∞)Z. As shown in Example 3.2, conditions (A0)-(A4) hold. If we choose
c = 1

4 and λ = 1, then

lim inf
v→∞

f(t, v)
vfv(t, cv)

= lim inf
v→∞

t−2v2

1
2 t
−2v2

= 2 > 1 = λ > 0.

Hence all assumptions of Theorem 3.4 are satisfied. Furthermore, for β = 1
2 ,

∫ ∞
1

P (σ(t), a)fy(t, βP (σ(t), a))∆t = lim
b→∞

b∑
t=1

[(
t+1∑
s=a

1
s

)(
1
t2

t+1∑
r=a

1
r

)]
<∞.
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Therefore, we conclude that there is a solution y of (10) such that lim
t→∞

y(t)
P (t, a)

exists and is positive.

4. Conclusion and future directions. In this paper, we have obtained neces-
sary and sufficient conditions for the existence of a bounded nonoscillatory solution
with prescribed limit at infinity and a nonoscillatory solution whose derivative has
positive limit at infinity to(

p(t)y∆(t)
)∆

+ f(t, yσ)g(p(t)y∆) = 0.

These results were attained using the method of upper and lower solutions and
applying the Mean Value Theorem and L’Hôpital’s Rule.

In the future, we plan to consider the possibility of including the delay τ : T→ T,

where t ≤ τ(t) ≤ σ(t) and lim
t→∞

τ(t) =∞ in the case
∫ ∞ ∆t

p(t)
=∞.
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