Complex Variables Preliminary Exam May 2014

Directions: Do all of the following eight problems. Show all your work and justify your answers. Each problem is worth 10 points.

Notation: \mathbb{C} = the complex plane; $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ = the extended complex plane; $\mathcal{A}(G) = \{f : f \text{ is analytic on a region } G \subset \mathbb{C}\}; \mathcal{M}(G) = \{f : f \text{ is meromorphic on a region } G \subset \mathbb{C}_{\infty}\}; B(a; b) = \{z : |z - a| < b\}; \mathbb{D} = B(0; 1) = \{z : |z| < 1\}; \Re(z) \text{ and } \Im(z) \text{ denote the real part of } z \text{ and the imaginary part of } z, respectively.}$

- **1.** Let $D = B(0;1) \setminus \overline{B(3/4;1/4)}$. Find a one-to-one conformal map f of D onto \mathbb{D} such that f(0) = 0.
- **2.** Find all $f \in \mathcal{A}(\mathbb{C})$ such that $|\arg f(z)| < \frac{\pi}{4}$ for all $z \in \mathbb{C}$.
- **3.** Prove that if $f \in \mathcal{M}(\mathbb{C}_{\infty})$, then f is a rational function.
- 4. Give an example of a function $f \in \mathcal{M}(\mathbb{C})$ such that f has a pole of order 5 at z = 0 and $\int_{\gamma} f(z)dz = 4$ where γ has parametrization $\gamma(t) = e^{it}, 0 \le t \le 2\pi$.
- 5. Let $f \in \mathcal{A}(\mathbb{D})$ satisfy $f(\mathbb{D}) \subset \mathbb{D}$ with f(0) = 0. Prove that $\sum_{n=0}^{\infty} (f(z))^n$ converges in $\mathcal{A}(\mathbb{D})$.
- 6. Let the sequence $\{f_n\} \subset \mathcal{A}(G)$ and $f \in \mathcal{A}(G)$ where G is a region. Suppose that $\{f_n\}$ converges to f in the topology of uniform convergence on compact subsets of G. Prove that $\{f_n^{(k)}\}$ converges to $f^{(k)}$ in the topology of uniform convergence on compact subsets of G, for each $k = 1, 2, 3, \cdots$
- 7. Locate and classify the isolated singularities (including any potential isolated singularity at the point at infinity) by type for each of the following functions. Additionally, for any singularity which is a pole, determine the order of the pole.

(a)
$$\frac{\sin^2 z}{z^4}$$
 (b) $\sin \frac{1}{z} + \frac{1}{z^2(z-1)}$ (c) $\csc z - \frac{1}{z}$

8. Let $f \in \mathcal{A}(\mathbb{C})$. Suppose that the sequence $\{f(0), f'(0), f''(0), \cdots, f^{(n)}(0), \cdots\}$ is bounded. Show that $\{f(z), f'(z), f''(z), \cdots, f^{(n)}(z), \cdots\}$ is a normal family.