Complex Analysis

Preliminary Examination

Answer all 8 questions. Notation: $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}, B(a;r) = \{z \in \mathbb{C} \mid |z - a| < r\}, H(G) = \{f : G \to \mathbb{C} \mid f \text{ is analytic on the domain } G\}, [a, b] = \text{the line segment connecting } a \text{ and } b.$

- 1. Let $f, g \in H(\mathbb{C})$ with $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$. Show that there exists $c \in \mathbb{C}$ such that f = cg.
- 2. Evaluate $\int_0^\infty \frac{x^p}{1+x^2} dx \text{ for } -1$
- 3. Find a one-to-one conformal map f of $\mathbb{D} \setminus \left[\frac{1}{2}, 1\right]$ onto $B\left(0; \frac{1}{2}\right)$ such that real numbers are mapped to real numbers.
- 4. Suppose $f = u + iv \in H(G)$. Prove that if $v(z) = e^{u(z)}$ for all $z \in G$, then f must be constant.
- 5. Find the number of zeros of $f(z) = z^5 20z^4 + 5z^3 z^2 + 50z 17$ inside the annulus $\{z \in \mathbb{C} \mid 1 < |z| < 5\}$. Justify your answer.
- 6. Suppose the sequence $\{f_n\}$ converges to f in $H(\mathbb{D})$, and for each n, the function f_n has exactly one zero in \mathbb{D} .
 - (a) Show that either f is identically zero on \mathbb{D} or else has at most one zero in \mathbb{D} .
 - (b) Give an example of a sequence $\{f_n\}$ as above, which converges to f in $H(\mathbb{D})$, but where the limit function has no zeros in \mathbb{D} .
- 7. Find the Laurent expansion centered at z = 0 of $f(z) = \frac{z+2}{z^2-z-2}$ in the following annuli:
 - (a) $\{z \in \mathbb{C} \mid 1 < |z| < 2\}$
 - (b) $\{z \in \mathbb{C} \mid 2 < |z| < \infty\}$
- 8. State the Riemann Mapping Theorem and prove the uniqueness part.