Instructions:

Do each of the following problems. Show all relevant steps which lead to your solutions.

Notation:

 \mathbb{C} denotes the complex plane. \mathbb{C}_{∞} denotes the extended complex plane, i.e., $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$.

For $z \in \mathbb{C}$, $\Re z$ and $\Im z$ denote the real and imaginary parts of z, respectively.

 \mathbb{D} denotes the open unit disk in \mathbb{C} , i.e., $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

B(a,r) denotes the open disk in \mathbb{C} centered at a of radius r, i.e., $B(a,r) = \{z \in \mathbb{C} : |z-a| < r\}.$

ann $(a; \alpha, \beta)$ denotes the open annulus in \mathbb{C} centered at a of inner radius α and outer radius β , i.e., ann $(a; \alpha, \beta) = \{z \in \mathbb{C} : \alpha < |z - a| < \beta\}.$

 \mathbb{U} denotes the upper half-plane in \mathbb{C} , i.e., $\mathbb{U} = \{z \in \mathbb{C} : \Im z > 0\}.$

For a region $G \subset \mathbb{C}$, let $\mathcal{A}(G) = \{f : f \text{ is analytic on } G\}$.

For a connected set $F \subset \mathbb{C}$, let $\mathcal{C}(F) = \{f \mid f : F \to \mathbb{C} \text{ and } f \text{ is continuous on } F\}$.

1. (a) Find a power series expansion for $f(z) = \frac{1}{2z - z^2}$ about z = 1.

(b) Find a Laurent series expansion for $g(z) = \frac{1}{z} + \frac{1}{z+2} + \frac{1}{(z-1)^2}$ which is valid for ann(0; 1, 2).

- 2. Let f be an entire function such that $|f(z)| \leq A + B|z|^k$ for $z \in \mathbb{C}$ where A, B, k are positive constants. Prove that f is a polynomial.
- 3. Suppose that f is a meromorphic function on $\{z : |z| \le 2\}$ with double zeros at both 1 + i and at 1 + 2i, a double pole at 1/2 i and a simple pole at 1. Compute the complex line integral

$$\int_{\gamma} z \frac{f'(z)}{f(z)} \, dz \; ,$$

where γ is the circle $\{z : |z| = 3/2\}$.

- 4. State and prove Morera's Theorem.
- 5. Let G be a region and suppose $\{f_n\}$ is a sequence of analytic functions in $\mathcal{A}(G)$ that converges uniformly on compact subsets of G to a function f, which is continuous on G. Prove that $f \in \mathcal{A}(G)$.
- 6. Let f be analytic and non-zero on a simply connected domain G. Prove that $\log |f(z)|$ is harmonic on G.
- 7. Let $f \in \mathcal{A}(\mathbb{D})$ satisfy $|f(z)| \leq \frac{1}{1-|z|}$. Show that $|f'(0)| \leq 4$.
- 8. Given α such that $0 < \alpha < \pi$, find a conformal mapping f from the domain $G = \{z : \Im z < 0\} \setminus \{e^{i\theta} : \pi \le \theta \le 2\pi \alpha\}$ onto \mathbb{U} such that $f(e^{-i\alpha/2}) = i$.
- 9. For a, b > 0, evaluate the integral $\int_0^\infty \frac{\cos ax}{x^2 + b^2} dx$. Justify your steps.