Complex Variables Preliminary Exam May 2010

Directions: Do all of the following ten problems. Show all your work and justify your answers. Each problem is worth 10 points.

Notation: \mathbb{C} — the complex plane; $\mathbb{D} := \{z : |z| < 1\}$ — the unit disk; $\Re(z)$ and $\Im(z)$ denote the real part of z and the imaginary part of z, respectively; Log z denotes the principal branch of the logarithm.

- **1.** Compute all values of the following multi-valued expression: $(e^i)^i$.
- **2.** Let u(x, y) be harmonic on a domain $D \subset \mathbb{C}$ and let v(x, y) be a harmonic conjugate of u(x, y) on D.
 - (a) Prove that u(x, y)v(x, y) is harmonic on D.

(b) Prove that if x u(x, y) is harmonic on D then u(x, y) = ay + b, where a and b are constants.

- **3.** Let G be a domain in \mathbb{C} , $a \in G$, and let $G_a = G \setminus \{a\}$. Suppose that f is a bounded analytic function on G_a . Prove that an isolated singularity of f at z = a is removable.
- **4.** Let f be an entire function. Suppose that there is a polynomial p such that for each $z \in \mathbb{C}, |f(z)| \leq |p(z)|$. Show that f is also a polynomial.
- 5. (a) State any version of Runge's approximation theorem.
 (b) Prove that there is a sequence of polynomials p_n such that p_n(z) → sin z pointwise if ℜ z > 0, p_n(z) → cos z pointwise if ℜ(z) < 0, and p_n(z) → 0 pointwise if ℜ z = 0.
- 6. Locate and classify for each of the functions all the singularities (including any singularity at $z = \infty$) as isolated or non-isolated. Further, classify the isolated singularities by type (removable, pole, essential):

(a)
$$\frac{1}{e^z - 1} - \frac{1}{z}$$
 (b) $\frac{1}{\text{Log } z}$ (c) $z^2 \sin(1/z)$

7. Use the Residue Calculus to evaluate the integral

$$\int_0^\infty \frac{x^2 \, dx}{x^4 + x^2 + 1}.$$

8. Let $A(\mathbb{D})$ be the set of analytic functions on the unit disk. Let $F = \{f \in A(\mathbb{D}) : f(0) = 1, f(\mathbb{D}) \subset \mathbb{C} \setminus (-\infty, 0]\}$. Use Schwarz's lemma to find

$$\max_{f\in F} |f'(0)|$$

- **9.** Find a conformal mapping w = f(z) from the semi-disk $\mathbb{D}^+ := \{z \in \mathbb{D} : \Im(z) > 0\}$ onto itself with continuous extension to the boundary of \mathbb{D}^+ such that f(-1) = 1, f(0) = i, f(1) = -1.
- 10. Let f be a holomorphic function defined in a neighborhood of the closed disk $\mathbb{D} = \{z : |z| \leq 1\}$ such that f(0) = 1 and |f(z)| > 1 if |z| = 1. Prove that f has at least one zero in the unit disk \mathbb{D} .