Preliminary Exam

Instructions:

Do each of the following problems. Show all relevant steps which lead to your solutions.

Notation:

 \mathbb{C} denotes the complex plane. \mathbb{C}_{∞} denotes the extended complex plane, i.e., $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$. For $z \in \mathbb{C}$, $\Re z$ and $\Im z$ denote the real and imaginary parts of z, respectively. \mathbb{D} denotes the open unit disk in \mathbb{C} , i.e., $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. B(a, r) denotes the open disk in \mathbb{C} centered at a of radius r, i.e., $B(a, r) = \{z \in \mathbb{C} : |z - a| < r\}$. \mathbb{U} denotes the upper half-plane in \mathbb{C} , i.e., $\mathbb{U} = \{z \in \mathbb{C} : \Im z > 0\}$. For a region $G \subset \mathbb{C}$, let $\mathcal{A}(G) = \{f : f \text{ is analytic on } G\}$.

1. Show that if the power series $\sum_{n=0}^{\infty} a_n z^n$ converges on the disk B(0,R), then the power series $\sum_{n=0}^{\infty} n a_n z^{n-1}$ converges on the disk B(0,R).

Note: this result is used to prove the fact that when a function f is defined by a power series on a disk B(0, R), then f has a derivative f' and f' has a power series representation and the power series representation for f' converges on the same disk B(0, R).

- 2. State and prove the Casorati-Weierstrass Theorem.
- 3. Use the residue theorem to evaluate the integral $\int_0^\infty \frac{\sin x}{x(1+x^2)} \, dx$. Verify each step.
- 4. Suppose that $f : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ is meromorphic on \mathbb{C}_{∞} . Prove if 0 is not in the range of f, then f is constant.
- 5. Let $G_1 = B(0,1) \setminus \overline{B(1+i,1)}$ and $G_2 = \{z : |\Re z| < 1\}$. Find a conformal map f from G_1 to G_2 such that f(0) = 0.
- 6. Suppose that $f \in \mathcal{A}(B(0, R+1))$ and that there exists a constant M such that $|f(z)| \leq M$ for all $z \in \partial B(0, R)$. For $0 < \rho < R$, find an upper bound, in terms of M, ρ , R and n, for $|f^{(n)}(z)|$ for $z \in \overline{B(0, \rho)}$.
- 7. Let $f \in \mathcal{A}(\mathbb{C})$. Suppose that for every unbounded sequence $\{z_n\}$ that the sequence $\{f(z_n)\}$ is also unbounded. Prove that f is a polynomial.
- 8. Find the domain of convergence of the series $\sum_{n=0}^{\infty} \left(\frac{z-1}{z+1}\right)^n$, i.e., the maximal region G on which the series converges uniformly on compact subsets. Justify your work.
- 9. Give an explicit example of a function $f \in \mathcal{A}(\mathbb{C} \setminus \{1\})$ which has the property that the range $f(\mathbb{D}) \subset \mathbb{D}$ and the range $f(\mathbb{C} \setminus \{1\})$ is dense in \mathbb{C} .
- 10. Use the definition to prove that the function $u(x, y) = 2x 3y \log(x^2 + y^2)$ is harmonic in the left half-plane $H_- = \{z = x + iy : x < 0\}$. Then find an analytic function f(z) such that $\Im f(z) = u(x, y)$ for all $z = x + iy \in H_-$ and f(-1) = 1 + 2i.