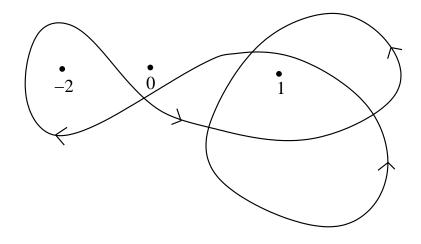
**Complex Analysis** 


## **Preliminary Examination**

May 2008

Answer all questions completely. Calculators may not be used.

Notation:  $\mathbb{D} = \{z : |z| < 1\}, H(G) = \{f : f \text{ is analytic on the region } G\}.$ 

- 1. State and prove Hurwitz's Theorem.
- 2. Find a conformal map from the region  $\{re^{i\theta}: 0 < r < 1, \frac{-\pi}{6} < \theta < \frac{\pi}{6}\}$  onto the region  $\{re^{i\theta}: 0 < r < \infty, 0 < \theta < \frac{\pi}{6}\}$ .
- 3. Does there exist a function  $f \in H(\mathbb{D})$  such that  $\lim_{|z| \to 1} |f(z)| = \infty$ ? Why or why not?
- 4. Prove that if f is nonconstant, continuous on all of  $\mathbb{C}$  and analytic on  $\mathbb{C} \setminus \{x + iy : y = 0\}$ , then f must be unbounded.
- 5. Prove that if w is a root of the polynomial  $5z^4 + z^3 + z^2 7z + 14$  then |w| < 2.
- 6. Let  $\{f_n\}$  be a sequence in H(G) and there exists M > 0 so that for all  $z \in G$  and all  $n \in \mathbb{N}$ ,  $|f_n(z)| < M$ . Suppose  $\{f_n\}$  converges pointwise to f on G. Show that  $\{f_n\}$  converges to f in H(G).
- 7. For each of the following, give an example or prove that no such example exists.
  - A. A harmonic function on a region G which does not have a harmonic conjugate on G.
  - B. An entire function with a pole at infinity.
  - C. A Möbius transformation with exactly 3 distinct fixed points.
- 8. Evaluate  $\int_{\gamma} \frac{e^z}{z(z+2)(z-1)^2} dz$ , where  $\gamma$  is the closed rectifiable curve indicated below.

