Complex Analysis Preliminary Examination

Do all 9 problems. Notation: $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

- 1. Find a one-to-one conformal map f of $\mathbb{D} \setminus (-1, 0]$ onto \mathbb{D} such that f(1/2) = 0.
- 2. Give an explicit formula for a one-to-one conformal map defined on \mathbb{D} whose range is dense in \mathbb{C} .
- 3. State and prove Rouche's Theorem.
- 4. Let g be a rational function with |g(z)| = 1 whenever |z| = 1. Prove that

$$g(z) = \frac{b_1(z)}{b_2(z)},$$

where b_1 and b_2 are finite products of the form

$$e^{i\theta} \prod_{j=1}^{n} \frac{\alpha_j - z}{1 - \overline{\alpha_j} z},$$

where $|\alpha_j| < 1, j = 1, 2, \dots n$, and $\theta \in \mathbb{R}$.

- 5. Suppose f is entire and $\lim_{z\to\infty} \frac{f(z)}{z} = 0$. Prove that f must be a constant function.
- 6. Let f be a one-to-one, analytic map of \mathbb{D} into \mathbb{D} . Prove that

$$|f'(z)| \le \frac{1}{1 - |z|^2},$$

for all $z \in \mathbb{D}$.

- 7. Let $h(z) = z + \frac{z^2}{2}$. Find the area of $h(\mathbb{D})$.
- 8. Let $\Omega \subset \mathbb{C}$ be a simply connected region and $u : \Omega \to \mathbb{R}$ a harmonic function. Prove that there exists $v : \Omega \to \mathbb{R}$ such that u + iv is analytic on Ω .
- 9. Let

$$p_n(z) = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \dots + \frac{z^n}{n!}.$$

Prove that for every R > 0 there exists N > 0 such that for all $n \ge N$ the zeros of p_n belong to the set $\{z : |z| > R\}$.