Complex Analysis Preliminary Examination

Do all 8 problems. Notation: $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

- 1. Evaluate $\int_{-\infty}^{\infty} \frac{\cos(2x)}{1+x^2} dx.$
- 2. Find a one-to-one conformal map f of the half-strip $\{x + iy : 0 < y < 4, x > 0\}$ onto the upper half-plane $\{x + iy : y > 0\}$.
- 3. Prove the Argument Principle: Let f be meromorphic in G with poles p_1, p_2, \ldots, p_m and zeros z_1, z_2, \ldots, z_n , counted according to multiplicity. If γ is a closed rectifiable curve in G with $\gamma \approx 0$ and not passing through p_1, p_2, \ldots, p_m or z_1, z_2, \ldots, z_n , then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{n} n(\gamma; z_k) - \sum_{j=1}^{m} n(\gamma; p_j).$$

- 4. A function $w : \mathbb{D} \to \mathbb{C}$ is called **planar harmonic** if it can be written as w = u + iv, where u and v are harmonic (but not necessarily harmonic conjugates). Prove that $w : \mathbb{D} \to \mathbb{C}$ is planar harmonic if and only if it can be written in the form $w = f + \overline{g}$ where f and g are analytic on \mathbb{D} .
- 5. Let f be an analytic function mapping \mathbb{D} onto a subset of the right half-plane $\{x + iy : x > 0\}$ with f(0) = 1. Show that $|f'(0)| \le 2$.
- 6. Show that the series $\sum_{n=1}^{\infty} \frac{z^n}{1-z^n}$ converges for $z \in \mathbb{D}$. Show that the limit function is analytic in \mathbb{D} .
- 7. Prove that $1 + z az^n$ has a root inside $\{z : |z| < 2\}$ for all |a| > 2 and n > 2.
- 8. Let $f : \mathbb{C} \to \mathbb{C}$ be entire. Suppose there exist discs D_1 and D_2 such that $f(\mathbb{C} \setminus D_1) \subset D_2$. Prove f must be constant.