Complex Analysis

Answer all questions completely. Calculators may not be used. Notation: $\mathbb{D} = \{z : |z| < 1\}, H(G) = \{f : f \text{ is analytic on the region } G\}.$

- 1. Suppose that $f : \mathbb{D} \to \mathbb{D}$ is holomorphic, with f having a zero of order at least n at z = 0, where $n \ge 1$. Show that $|f^{(n)}(0)| \le n!$.
- 2. Suppose that $\mathcal{F} \subset H(\mathbb{D})$. Let $A = \{z : \frac{1}{2} < |z| < 1\}$ and define $\mathcal{F}_A = \{f|_A : f \in \mathcal{F}\}$. Show that if \mathcal{F}_A is normal in H(A) then \mathcal{F} is normal in $H(\mathbb{D})$.
- 3. Suppose f is analytic in \mathbb{D} and $|f(z)| \to 1$ as $|z| \to 1^-$. Show that the number of solutions (counting multiplicity) of $f(z) = \alpha$ is the same for all $\alpha \in \mathbb{D}$.
- 4. Describe the branches of $z \mapsto z^{\frac{1}{4}}$ on $G = \mathbb{C} \setminus (-\infty, 0]$. How many branches are there? Which is the principal branch? What is the range of each branch? Describe the associated Riemann surface.
- 5. Let $G = \{z \in \mathbb{D} | \text{Im } z > 0\} \setminus \{iy \mid 0 < y \leq \frac{1}{2}\}$. See the figure below. Give an explicit one-to-one conformal map which maps G onto \mathbb{D} .

6. Let
$$f(z) = \frac{1}{z^2(z-1)(z-2)}$$
. Find $\int_{\gamma} f(z) dz$ where γ is as pictured below:

7. Find the fallacy in the following argument: Let *m* and *n* be two arbitrary integers. Then

$$e^{2m\pi i} = e^{2n\pi i}$$
:

hence,

$$\left(e^{2m\pi i}\right)^i = \left(e^{2n\pi i}\right)^i.$$

It follows that

$$e^{-2m\pi} = e^{-2n\pi}$$

Since $-2m\pi$ and $-2n\pi$ are both real, $-2m\pi = -2n\pi$. Therefore,

m = n.

8. If u is a positive harmonic function on the ball $\{z \mid |z - a| < R\}$, show that

$$\frac{1}{3}u(a) \le u(z) \le 3u(a)$$

for $|z-a| \leq \frac{R}{2}$.