Preliminary Examination 2001 Complex Analysis

Do all problems.

Notation.

 $\mathbb{C} = \{ z : z \text{ is a complex number} \}$

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$$

- 1. Prove that if f is entire and f(-z) = f(z) for all z, then there is an entire function g so that $f(z) = g(z^2)$ for all z.
- 2. Let $D = \mathbb{D} \cap \{z : \text{ Im } z > 0\}$. Find the image of D under the map $f(z) = \exp(\frac{i-iz}{z+1})$.
- 3. Let $D = \{z : 0 < \arg z < 3\pi/2\}$. Find a function u which is continuous on $\overline{D} \setminus \{0\}$, harmonic on D, and satisfies u(x,0) = 1 for x > 0 and u(0,y) = 0 for y < 0, where z = x + iy.
- 4. Let f be an analytic, one-to-one mapping from \mathbb{D} onto a simply connected region G such that f(0) = 0. Let $d = \operatorname{dist}(0, \mathbb{C} \setminus G)$. Show that $|f'(0)| \ge d$.
- 5. Suppose that f is an entire function and Im $f(z) \neq 0$ whenever $|z| \neq 1$. Prove that f is constant.
- 6. Suppose f is analytic in $\mathbb{C} \setminus \{0\}$ and satisfies

$$|f(z)| \le |z|^2 + \frac{1}{|z|^2}$$

for $z \neq 0$. If f is an odd function, what form must the Laurent series of f have?

7. Evaluate the following integral, justifying all of your steps.

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 + x + 1} dx$$

8. Suppose $\{f_n\}$ is a sequence of analytic functions on a region D such that there exists a positive constant M with the property that

$$\int \int_D |f_n(z)|^2 dx dy \le M \text{ for all } n.$$

Show that $\{f_n\}$ has a subsequence that converges uniformly on compact subsets of D. Hint: If f is analytic in a neighborhood of a closed ball $\overline{B(a; R)}$, show that

$$|f(a)|^{2} \leq \frac{1}{\pi R^{2}} \int_{0}^{2\pi} \int_{0}^{R} |f(a + re^{i\theta})|^{2} r dr d\theta.$$

- 9. Show that there is no one-to-one analytic function which maps $A = \{z : 0 < |z| < 1\}$ onto $B = \{z : 1 < |z| < 2\}.$
- 10. Suppose f is analytic on |z| < 1 and continuous on $|z| \le 1$. Assume f(z) = 0 on an open arc on the circle |z| = 1. Prove that $f \equiv 0$.