Preliminary Examination 2000 Complex Analysis

Do all problems.

Notation.

 $\mathbb{C} = \{ z : z \text{ is a complex number} \}$

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$$

- 1. Show that if u is a real-valued harmonic function in a domain $\Omega \subset \mathbb{C}$ such that u^2 is harmonic in Ω , then u is constant.
- 2. For |z| < 1 let $f(z) = \frac{1}{1-z} \exp\left[-\frac{1}{1-z}\right]$, and for $0 \le \theta < 2\pi$ let $\ell_{\theta} = \{z : z = re^{i\theta}, 0 \le r < 1\}$. Show that f is bounded on each set ℓ_{θ} . Is f bounded on \mathbb{D} ? Explain.
- 3. Let $\Omega \subset \mathbb{C}$ be the intersection of the two disks of radius 2 whose centers are at z = 1 and z = -1. Find an explicit conformal mapping of Ω onto the upper-half plane.
- 4. Does there exist a function f that is analytic in a neighborhood of z = 0, for which (a) f(1/n) = f(-1/n) = 1/n² for all sufficiently large integers n?
 (b) f(1/n) = f(-1/n) = 1/n³ for all sufficiently large integers n?

In each case, either give an example or prove that no such function exists.

- 5. (a) Let f be analytic on D with lim_{|z|→1⁻} f(z) = 0. Prove f ≡ 0.
 (b) Let g be analytic on D. Prove that the statement lim_{|z|→1⁻} g(z) = ∞ is impossible.
- 6. Let $f : \mathbb{D} \to \mathbb{D}$ be analytic. Suppose there exists $z_0 \in \mathbb{D}$ with $f(z_0) = z_0$ and $f'(z_0) = 1$. Prove that $f(z) \equiv z$.
- 7. Find all Laurent expansions of $\frac{1}{(z-2)(z-3)}$ in powers of z and state where they converge.
- 8. Use the Theorem of Residues and an appropriate contour to evaluate

$$\int_{-\infty}^{\infty} \frac{\sqrt{x+i}}{1+x^2} dx \; ,$$

where on {Im z > 0}, we choose the branch of $\sqrt{z + i}$ whose value at 0 is $e^{\pi i/4}$. Describe your method carefully, and include verification of all relevant limit statements.

9. Show that there exists an unbounded analytic function f on \mathbb{D} such that

$$\int_{\mathbb{D}} |f'(z)|^2 \, dA(z) < +\infty,$$

where dA is area measure on \mathbb{D} .

10. Show that every function that is meromorphic on the extended complex plane is rational.