Preliminary Examination 1999 Complex Analysis

Do all problems.

Notation:

 $\mathbb{R} = \{x : x \text{ is a real number}\} \qquad \mathbb{C} = \{z : z \text{ is a complex number}\} \\ B(a, r) = \{z \in \mathbb{C} : |z - a| < r\} \qquad \operatorname{ann}(a, r_1, r_2) = \{z \in \mathbb{C} : r_1 < |z - a| < r_2\} \\ D = B(0, 1) \qquad \mathbb{C} = \{z : z \text{ is a complex number}\} \\ \mathbb{C} = \{z : z \text{ is number}\} \\ \mathbb{C} = \{z : z \text{ is number}$

For $G \subset \mathbb{C}$, let A (G) denote the set of analytic functions on G (mapping G to \mathbb{C}) and let Har(G) denote the set of harmonic functions on G (mapping G to \mathbb{R}).

- 1. Suppose the power series $\sum_{n=0}^{\infty} a_n z^n$ converges on |z| < R where z and the a_n are complex numbers. If $b_n \in \mathbb{C}$ is such that $|b_n| < n^2 |a_n|$ for all n, prove that $\sum_{n=0}^{\infty} b_n z^n$ converges for |z| < R.
- 2. Let $f, g \in A$ (D). For 0 < r < 1, let $\Gamma_r = \partial B(0, r)$.
 - a) Prove that the integral $\frac{1}{2p} \int_{\Gamma_r} \frac{1}{w} f(w) g(\frac{z}{w}) dw$ is independent of *r* provided that |z| < r < 1 and that it defines an analytic function h(z), |z| < 1.
 - b) Prove or supply an counterexample: if $f \not\equiv 0$ and $g \not\equiv 0$, then $h \not\equiv 0$.
- 3. Let $f \in A$ (D). Suppose that $|f(z)| \le \frac{1}{(1-|z|)^{\frac{1}{2}}}$. Prove that there exists a M (independent of f) such that $|f'(z)| \le \frac{M}{(1-|z|)^{\frac{3}{2}}}$.
- 4. Let $f \in A$ (D) such that $f(D) \subset D$, f(0) = 0. Prove for $z \in D$ that $|f(z) + f(-z)| \le 2 |z|^2$ with equality if and only if $f(z) = \mathbf{1} z^2$ for some $\mathbf{1}$ with $|\mathbf{1}| = 1$.
- 5. In which quadrant do the roots of $p(z) = z^4 + 2z + 1$ lie?

- 6. Let $f \in A$ (D) and suppose that f is not the identity map. How many fixed points can f have?
- 7. Let f be an entire function. Suppose that f has a root at z = +i and z = -i. Let $M = \max_{|z|=2} |f(z)|$. Prove that $|f(z)| \le \frac{M}{3} |z^2 + 1|$ on B(0,2).
- 8. Prove that $\prod_{n=1}^{\infty} (1 \frac{z^2}{n^2})$ is an entire function and find its zeros, counting multiplicity.
- 9. Evaluate $\int_{0}^{\infty} \frac{x \sin x}{x^2 + 1} \, dx \, \cdot$
- 10. Let $u \in Har(\mathbb{C})$. Show that u can be positive on all of \mathbb{C} only if u is constant.