Preliminary Examination Complex Analysis May 1994

Provide complete solutions for each problem.

- 1. Evaluate $\int_{1}^{\infty} \frac{e^{x/\pi}}{1+e^x} dx$. Carefully justify any limit passages you make.
- 2. Let $D = \{ z : |z| < 1 \}$. Let $\mathcal{I} = \{ f : f \text{ is analytic on } D, f(z) = a_1 z + a_2 z^2 + a_3 z^3 + \cdots$ with $|a_n| \le n \text{ for } n \in \mathbb{Z}^+ \}$. Prove that \mathcal{I} is normal.
- 3. Let f be analytic on $\overline{B(0,r)}$ with $f(0) \neq 0$. Suppose { a_1, a_2, \ldots, a_n } are the zeros of f on B(0,r), counted according to multiplicity.
 - a) Show that if $|\zeta| = r$, then

$$\frac{1}{2\pi}\int_0^{2\pi}\log|re^{i\theta}-\zeta| = \log r$$

b) Show that the geometric mean of f on |z| = r is $|f(0)| \frac{r^n}{\prod |a_k|}$, i.e., show

$$e^{\frac{1}{2\pi}\int_0^{2\pi} \log |f(re^{i\theta})| d\theta} = |f(0)| \frac{r^n}{\prod |a_k|}.$$

Hint: Construct a function *F* which has no zeros on B(0,r) and for which |F(z)| = |f(z)| on |z| = r. Consider the two cases: (i) *F* has no zeros on |z| = r; (ii) *F* has zeros on |z| = r [use part a)].

4. Let Γ be the square given by

$$\Gamma = \{ z: -5 \leq \mathcal{R}_e \ z, \mathcal{I}_m \ z \leq 5 \}.$$

Suppose that *f* is analytic on a domain containing Γ and f''(1) = 1. Define $M = \max_{z \in \Gamma} |f(z)|$. Find an example of a function *f* with M = 5 or prove that none exists.

5. Prove that the equation

$$z + 3 + 2e^z = 0$$

has precisely one root in the left-half plane.

- 6. Suppose that *f* is analytic and nowhere zero in $\Omega = \{ z : \mathcal{R}_e \ z < 1 \}$. Prove that $\log |f|$ is harmonic in Ω .
- 7. Let *S* be a domain in the complex plane. Assume that *B* is a ball of positive radius contained in *S*. Let *f* be an analytic function on *S*. Prove that if $\mathcal{I}_m f$ is constant on *B*, then *f* is constant on *S*.
- 8. For $n \in Z^+$ let

$$P_n(z) = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!}.$$

Prove that for each r > 0 there exists an integer N = N(r) such that for all n > N all of the roots of P_n lie outside of the circle $\{z : |z| = r\}$.

9. Find the linear fractional transformation which maps the points 2, 1+i, 0 to the points 0, $1, \infty$. Describe the image of the exterior of the union of the disks $\{z : |z - 1| < 1\}$ and $\{z : |z + 1| < 1\}$.