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1 Introduction

In (1}, Ammar, Dayawansa and Martin considered the problem of matching
data points ay,ay,... to a curve of the form

y(t) = pr(t)eM* + py(t)e™ + -+« + py(t)e™ (1)

where py(t), p2(t), ..., ps(t) are polynomials in ¢. The data is assumed to be
generated by sampling a physical process over equally space time increments
whose dynamics are described by curves of the form (1). They solved this
interpolation problem by a method that is similar to the classical method
of Prony [(4].

In this paper we pursue the solution to this exponential interpolation
problem by a continuation method described in [2]. There, in [2], from
y(t), a smooth mapping F : R* — R™ (R" n-dimensional euclidean space) is
constructed. Then, from the zeros of F', the coefficients of the polynomials
and the factors y;,y3,...,¥, are recovered.
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More precisely, if pi(t) = a0+ a1t + -+ + aytb, pa(t) = bo+ byt + -+ +
bit!y...,p(t) = cot eyt + - +cut™ with k <1< ... < m, and the physical
process is sampled at time intervals At, 2A¢,... giving rise to the assumed
values

Pi(D)ENB ..o p(AL)eMA = o
Pi(208)eM8t 4 ... 4 p,(2A4)eM D = q, "
Pl(nAt)e)“"A‘ -I— vee + p‘(nAt)eAlﬂA‘ = ap,

wheren=(k+2)+({+2)+ -+ (m+2).

The coordinate functions of F : R* — R" are defined as follows; first
assume At = 1 and define ¢ = eM,y = €%,...,2 = e*, Next set X =
(agy@1y...,a1,%; boybyys.. by «..yCoy€1y...y6ny2). Then the coordinate
functions Fy, Fy,..., F, of F are defined as

A(X) = pp(De+ps()y+ -+ +ps(1)z —ay
F(X) = p(22 +pi(y* + - + po(2)2® - aa, (3)

Fi(X) = p(n)s" +pa(n)y" + - +ps(n)e" — an,

Therefore, finding the zero of the polynomial system (3)- or, more pre-
cisely, finding the zeros which are the permutations in the components of
a fundamental root ( see section 3 of [2] for a clarification of this point)-
enables us to recover the polynomial coefficients of p;(t), p2(t),...,p.(t) and
the exponential factors Ay, Ag, ..., A,, and so y(t) matches the data points.

2 Preliminaries

In the papers [2] and [3] the continuation method that we wish to exploit
in this paper was described. However, for the sake of completeness we give
some basic definitions and proofs of two theorems needed to justify our
computational work.

First, some definitions:

Definition 2.1 If F ; R® — R™ is at least continuously differentiable, then
JF(z), its Jacobian at z, is a continuous real valued function. If ¢(t) =



(¢1(t), ..., ¢n(2)) is @ path in R", it is said to be lifted by the mapping F
to a covering path r(t) = (ri(t),...,r4(2)) in R™ if F(r(t)) = ¢(t) for all
0<t<1.

The following theorem gives conditions under which paths of the form
(1 — t)F(a) for some a in an open set W of R® may be lifted to a covering
path lying in W. It is Theorem 2 of [3] or 2.1 of [2].

Theorem 2.1 Let C be a bounded convez domain of R® and F : C — R"
be at least continuously differentiable. If JF(z) # 0 for ¢ in Cy, then for
each zero z* of F' in C there is an open subset W of C such that for each
a in W the path (1 — t)F(a) may be lifted by F to a covering path z(t)in
W such that z* = z(1).

The open subset W may be described as follows: Let C be the bound-
ary of C' and U the nonempty component of R* — F(AC) which contains
the origin. Define the open subset St(0) of U as follows: y in U is in St(0)
if (1 =t)y, 0 <t <1, lies wholly in U, W is the connected component of
F-1(St(0)) which contains the zero z*.

In our case of interest, due to the deterministic processes described and
studied, we can see that because of uniqueness there is but one root and so
one set W is determined by the theorem.

In practice we do not explicitly find a covering path z(t), but rather we
observe that a covering path z(t) is a trajectory of the differential equation

F(z)5 = ~F(a) (1)

with initial condition z(0) = a. We then follow this solution to ¢ = 1.

It is clear that in order to use this method knowledge of where JF(z)
is zero is necessary. To that end we calculate the Jacobian of the system
in (3), but first we prove a lemma.

Lemma 2.1 Let A, B,...,C be the transpose of the n-vectors (1,z,22,...,
1Y), (Ly,v?...,9™Y), ...,(1,2,7%,...,2"" ) respectively, where n =
k+D+({+D+...4+(m+1),k<I<L...<m. Let A = A(z,y,...,2)
be the determinant of the n X n matriz whose column presentation is

(4,4,...,4®; B,B',...,BY; C,C,...,C"™)



and the primes denote differentiation with respect to the variable z,y,...,z.
Then, modulo a constant

A=@-yf(z-2)...(y—2)
where
p=(k+1)(I+1),g=k+1(m+1),...,r = ( +1)(m+1).

Proof: Recall that the derivative of an n X n determinant A is a sum of n
determinants where each summand is an n X n determinant obtained from
A by leaving fixed all columns of A save one which is differentiated entry
by entry. Evidently,

%% = det [4,..., A®-D gGH), )

consists of one term because of the identity of two columns in the remaining
terms. QObserve that %% = () because of the identity of at least two
columns. Again,

A

o7 = det ’[A,...,A("‘”,A("),A"‘“);...]+ det [4,...,AF-N), 4K+, ]

As before,

r=y

A

Fa7 o=y =0

For what minimum value of p is %';% # 0 when z = y? Clearly the end
position must be at least

[AG+D, A0+, qG+min, B BO, ),

This means the expression (z — y)?, p = (k+ 1)(! + 1), must appear as a
factor of A.

A similar situation must hold for the remaining variables. That is, (z—2)
appears as a factor at least ¢ = (k+1)(m+1) times. So £ must appear as a
power in A at least (k+1)(I+1)+- - +(k+ 1) (m+D)[(I+1)+- - - +(m+1)]) =
(k+1)(n — (k+ 1)) times. Note that this is the highest power that z can
appear in the expansion of A. For z"~!.g"~3... z%~(2¥+1) ig the product of



the first (k + 1) terms appearing along the skew diagonal. The exponent
onzis(k+1)n—~(k+1)? = (k+1)(n—(k+1)). Hence A divided by
(z —y)?... (z — 2)? is independent of z, A similar statement results from
considering (y — z) and the remaining differences in the variables. Hence
the lemma follows,

Theorem 2.2 Let F : R — R" have as its coordinate functions the system
of equations given in (3). Then, apart from & constent, JF(z) consists
entirely of factors of the form ai, by, .. . cm, powers of the variables z,y,...,2
and powers in all differences of expressions z ~y,z — z,...,y — 2. Note
that the value of JF(z) is independent of all but the leading coefficients of

the polynomials pi(t), p2(), ..., ps(t)-

Proof: The matrix representation for F' is an n X n matrix-where n =
(k4+2)4+(142)+ -+ (m+2). The presentation below gives the first k +2
columns, it is those columns which arise from the summand p;(t)e*! =
(ao+ art + ... + axt*)at, z = e*t, which makes up y(t).

The remaining columns are similar and can easily be filled in by the
reader.

[z T ... =T (1)
z? 227 .., 237 2p(2)=
AP ) T6)
2" nz® ... nfz® npy(n)z"? |

We evaluate this determinant by a sequence of column operations, the
first of which is to factor z from columns 1 through k + 1. Then multiply
columns 2 through k 4 1 by aqg, a;,...,8%-, respectively. Add the result
and subtract it from column k + 2. There then results the block form



[ 1 1 1 Gk
2z 2k 2t1g. 2
i wn-—l nzn—l . nbwn—l n"""a;,a:"" ]

Next factor a; from column k+2 and by a sequence of successive column
subtractions beginning with k+1 from k+2, k from k+1,...,1 from 2 and
subsequent factorings of z, the resulting form of the determinant appears

as

st (= Dai~?

[ z*! (n—-1)z"?% ... (ﬂ“l —nk)zn-? |

0
1

0 -
2k+l — 2k

(Jk‘f‘l ;.jk)wj‘“a

By further successive column operations and subsequent factorizations
of the variable = the block form appears as

1

z?

)

0 0
1 0
2z vee 2
R R M
[ 2" (n-1)2"% ... (n—1)(n-2)z""? |

Treating the other variables similarly in kind, it is clear that we can
reduce the Jacobian to the determinant of A of the previous lemma mod-
ulo powers of z,y,...,2 and the leading coefficients of the polynomials
21(t), pa(t), . . ., ps(t). The theorem follows.
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