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Abstract
A method is discussed for calculating a dirichlet polynomial with
positive coefficients. The method employs continuation techniques
used for finding the zeros of a mapping in n-dimensional euclidean
space R™,

1 Introduction

Suppose one were given a sample consisting of a number of unknown ra-
dioactive materials for which it is required not only to detect what materials
are present but also how much of each. One might go about solving this
problem in the following way. First, one recalls that each radioactive sub-
stance decays at a rate proportional to an exponential term of the form
e, where X is a term peculiar to the given substance. So that if, say,
¢ grams of such a substance were present in the given sample, then it is
probable that between ¢ and t 4+ d¢, ce ™ particles would decay. Thus
if ¢y,¢2,--+,¢, grams of n substances are in the sample, with Ay, -+, A,
their respective decay factors, then it is probable between t and t + dt that
cie™ ™ 4 .. 4 ¢ et particles would decay.

Next, in 2n equally spaced intervals t = At,2A¢,---2nAt one observes
the values pi, pa, - - -, pan Of the expression cie™ 1t + ... 4 ¢, e™?nt, This gives
rise to the following 2n-equations in 2n-unknowns:
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which is then to be solved.
Otherwise put, one is to solve for the root of the function F': R** — R*"
where the coordinate functions of F are

fI(ClJ"'Jcn:'Ila“':xn} =Cixl+62$2+“'+cnmn_p1
(1.2)
f ( . —_ 2n 2n 2n
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where z; = e ™2 ... 7 = e 3! and the ¢;’s are all positive. The

solution of this system of equations is the solution of the problem.

In practice we would, of course, use some least square approximation
technique, for example the algorithm developed in [1], [2], or [4]. How-
ever we feel that it is important to point out that given small amounts of
data “exact” solutions to this interpolation problem are possible and the
continuation methods for this can be used in this class of exponential in-
terpolation problems. We also feel that it is important to understand the
deterministic problem in order to understand the stochastic problem.

2 Preliminaries

In this section we give some basic definitions and the method which we
will use in finding the zeros of the nonlinear function is explained. We will
exploit certain continuation techniques in this paper.

First, all mapping F' : R™ — R™ are to be at least continously differen-
tiable, C'. Thus JF(z), the Jacobian of f at z, is a continuous real valued
function. If y(¢) = (y1(t),---,ya(¢)),0 <t <1, is a path in H“, it is said
to be lifted by the mapping f to a covering path z(t) = (z;(t),- - -, za(?))
if y(t) = F(z(t)) for all 0 <t < 1. The following theorem gives conditions
which enable us to state when the paths of the form (1 —¢)F(a) for some
a in an open subset W of R™ may be lifted by F to a covering path which

lies in W. It is Theorem 2 of [3].

Theorem 2.1 [3] Let C be a bounded conver domain of R* and F : C —
R™ be C'. If JF(z) # 0 for z in C, then for each zero z* of F in C there
15 an open subset W of C such that for each a in W the path (1 —t)f(a)
may be lifted by F to a covering path z(t) in W such that z* = z(1).
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The open subset 1V may be described as follows: Let JC be the bound-
ary of C' and U the nonempty component of R* — F(JC) which contains
the origin. Define St(0), the star of 0, as those points y in U for which
(1—t)y,0<¢t<1,liesin U. W is the connected component of £~ (S5¢(0))
which contains the zero z*.

In practice we do not find a covering path, rather we observe that a
covering path z(t) is a trajectory of the differential equation

F’(m)d—;c = —F(a) (2.1)
dt
with initial condition z(0) = a. We then numerically follow this solution
tot = 1.

It is of interest to note that at no point does our computation take us
into regions where the variables become negative if we start with positive
variables. This 1s important because it is well known that exponential
equations of the sort defined by (1.1) become ill-conditioned and intractable
when there are mixed weights. (See Wiscombe and Evans [1] or Evans, et.
al. [4] for this point.) Our experience is that even simple examples in which
solutions are selected with some ¢; negative become numerically impossible.

It 1s clear that in order to use this method, knowledge of the zeros of
JF(z) is necessary. To this end we calculate the Jacobian of the system in
equation (1.1).

Proposition 2.1 Let F : R™ — R®™ have as its coordinate functions
the system of equations given in (1.2). Then JF(cy, -+, €, T1y -+, Tn) i
Feiey ezt zi(zy — )t (g — )t (2 — 1)t F >0

Proof: The matrix representation for F” is the 2n x 2n matrix

T e Tn € ree Cp
2 2 .
T s 2011 oo 2epT
= " o (2.2)
2n n 2n-1 2n—1
z coe T nepzit coeonepzit
To evaluate the determinant of this matrix we factor out ¢, ¢z, - - -, ¢, from

columns n + 1 to 2n respectively. Then we note that what remains is



a symmetric function in the variables z;,z,,---,z, which we denote by
S(zy,---,z,). To evaluate the determinant, with the ¢’s removed, we just
need to look at the 1lst column, nth, n 4+ 1st and 2nth columns and then
make use of the symmetry of the determinant.

First we factor z; and z, from the 1st and the nth columns and then
subtract the first column from the (n +1)’st and the n’th column from the
2nth. Factoring out again an z; and z, out of the resulting (n 4+ 1)’st and
2n’th columns there results the following expression:

S(ﬂ«'l,"',i"n) =
1 1 0 0
1 Tn 1 1
2 2 :
z2z? | 2y z, 2z, 2z, (2.3)
zinml o Il (O — 1) .. (2 — 1227

Next, in the above determinant in which only the 1st, nth, (n + 1)st
and 2nth columns are presented, subtract the first column from the nth
and the (n + 1)st column from the 2nth and then factor out z, — z; from

column n and 2n to get:

S(mla"':xn):
1 1
2 2
- o BT 27,
cizi(z, — ;) Tp — Ty (2.4)
one1__2n-l
mﬁ. __xl 9 n—2
97 — 1)z2"
P (2n — 1)z

in which only the nth and (n + 1)st column are presented. Observe that if
T, = 1 then these two columns are identical. Hence there is yet another
factor of r, — z, present.

This means we may write S(z1,---,2,) as S(zy, -, 7,) = 2223(z, —
z1)°Q(zy,- -, 2,), where Q(z1,---,,) is a polynomial. In the same fash-

ion, by working with the columns headed by z; and z,, say, we can write



S(zy,+yx,) as S(zy, -+, 7,) = 232 (zy — 21)°Q (24, -+, z,), where again
Q'(zy,--+,z,) is a polynomial. But this clearly shows by divisibility prop-

erties and induction that S(z;,---,z,) may be written as

. 2 2 2 3 3 3,
5(3:13' Ty x?‘l) =Ty I'n(l'z"-'llfl) e (z.?'_l"i) T (fﬁn—'.l'n__]) -{(II'} T 'J'Iﬂ):
where j > 7 and A(zy, -+, z,)is an alternating polynomial in its arguments.
This last point is clear since S(z,- -+, z,) is symmetric. But A(zy, -+, z,)

an alternating form implies there are yet again factors of the form z; — z;,
for all ¢,7,7 > :. Finally by simply noting the degree of the arguments it
follows that S(z1,---,2z.) = £z - 22(z2 — 1)* - (zn — Tn-1)* and the
proposition follows.

3 Computing Experience

In this section we look at the computational experience we have had in
formulating a method for solving polynomial systems of nonlinear equations
of the type (1.2). There is a variety of general methods in the literature
for finding the roots of systems of polynomial equations [11], [12], [10].
Our overall experience has been that we have not been able to apply such
methods to (1.2) because of the deficiency of (1.2) as a system of polynomial
equations.

For a polynomial system of equations the deficiency of the system is
defined as the difference between the degree of the system and the number
of roots of the system. In general, a system of n polynomial equations

fl(yla"'vyn) =0
f2(y11“':yn) =0

fn(yla'”ayﬂ-) =0

will have dyd; - - - d, roots, where dj. is the degree of fi, 1 < k < n. The
degree of (1.2) is thus (2n + 1)!, where n is state dimension of the problem,
l.e., the number of independent factors z;. The construction and symmetry
of (1.2), however, show that all of the roots are permutations, in their
components, of a fundamental root whose z; components are ordered, i.e.,
zy < 72 < -+-7,. (The terms z; in (1.2) are uniquely associated and



determined by the factors z; in the system.) Thus, there are n! roots for

(1.2).

Li, Sauer and Yorke in [5] and Morgan and Sommese in [5,6] describe
general (homotopy) methods for finding all of the roots for any polynomial
system of equations. While those homotopy methods can be applied to
(1.2), the deficiency of (1.2) makes it inadvisable, because a large percentage
of the paths generated by those homotopies diverge (in C?") to infinity.

We considered several different approaches of varying complexity and
sophistication for finding the roots of (1.2):

(i) applying both direct and modified (quasi trust region) forms of New-
ton’s method;

(ii) using a package nonlinear solver (NS01A [MJDP], written by M. J. D.
Powell) which is a hybrid crossing of the method of steepest descent
with Newton’s method;

(111) using an IMSL package nonlinear solver (DNEQNF [IMSL], which
was based on a MINPACK subroutine HYBRD1 [MP]);

(iv) using a package differential equation solver (ODE, described in_[S])
to solve the differential equation (2.1) for the homotopy trajectory
described in Section 2;

(v) implementing a predictor-corrector path-following procedure to trace
the homotopy covering path described in Section 2.

In each case we contrasted the efficiency of the method against standard
sets of 1000 randomly generated problems at a test state dimension of n = 3
and n = 4. Also, using the homotopy methods we examined a broader
range of problems where the state dimension was not restricted as above.
For each of the problems we tested, we used a standardized entry point A
with components ¢; =l and z; =j/(n+1), 1 <j < n.

There is a secondary problem which needs to be addressed before we
look at a summary of our computational experience. That problem is that
in general the state dimension, n, of the system (1.2) is not known. I,
indeed, the system (1.2) arises from sampling data as suggested by the



prototype in Section 1, the state dimension of the problem is not aprior:
discernable.

We employed the following strategy for determining the state dimension
of the problem:

1. We start with a postulate for the initial state dimension, say n;, and
then solve (1.2) for that initial state dimension using a standardized
entry point. The system (1.2) involves 2n; observations of actual state
values.

2. Upon finding the solution of {1.2), we then compute predicted values
and, also, measure actual values for the next n; observations. If the I,
norm of the difference between the predicted values and the actual
values is sufficiently small, we presume that we have identified the
state dimension of the problem (as n;) and, also, the solution of the
problem as well.

3. Otherwise, we increment n; and cycle back to solving (1.2) with an
augmented state dimension. However, for this second pass (and all
subsequent passes) we have apriori information for constructing the
entry point - namely, information in the form of the solution, which
was just generated, for the lower-dimensional problem.

We note that there is an intrinsic problem with the assumption in (2).
Suppose that the actual state dimension for a given problem is N and
that two (or more) of the actual solution components, say z; and z;4,
are numerically close to each other. The above procedure may call for
termination at a test state dimension of N — 1 (or lower), because the
computed values for the function F in (1.2) at the test state dimension
N — 1 may numerically agree with the actual values up to the specified
error tolerance, i.e., we may have a test component z; which approximates
both z; and z;4; in such a way that

ci(z;)* ~ ezl + e+ 15 + 1%, 1<k < 3(V —1).

For all practical purposes the solution at the test state dimension of N — 1
is the solution for the measured data. However, theoretically, we have not
found the exact solution.



In the discussion which follows we will use C to denote the (n-dimensional)
vector of constants ¢;, X the (n-dimensional) vector of factors z; and Y
the (2n-dimensional) vector whose first n components are the components
of C and whose second n components are the components of X. We will
use SC, SX and SY to denote the analogs of C, X and Y, respectively,
which represent the exact solution for (1.2). Also, we will let G denote the
complement in R** of the singular set on which the Jacobian vanishes.

We note that the initial state of the vector C appeared to have little
impact on whether any of the methdods converged or failed.

(I) Newton’s Method

Newton’s method can be applied (easily) to the problem of solving (1.2),
because the Jacobian matrix for the function F in (1.2) is directly com-
putable. (See (2.2).) Rather than using the inverse of the Jacobian matrix
to compute successive iterates as

Y=Y - (JF(Y))'F(Y)
we alternatively solved the system
JF(Y)V=F)
for V and then calculated
Y, =Y-V.

Newton’s method was by far the weakest method. Unless the nature of the
test case was such that the initial vector X was very close to SX, then New-
ton’s method usually diverged or the program crashed. The termination
generally occurred, because in the simplistic form of the above implemen-
tation, we made no modification in the construction of successive iterates
for sensitivity to the singulamess of the Jacobian matrix.

We considered a modification to Newton’s method, a quasi trust region
approach. The errors ensued in the above direct implementaion because
the unmodified Newton correction was either abnormally large or because
the constructed iterate fell on the singular set for the Jacobian matrix. We
modified the implementation to restrict the size of the Newton correction



so that each successive iterate remained in the same component of G. How-
ever, that restriction was too stringent as Newton’s method then made no
observable movement towards the system solution.

(IT) NS01A

The nonlinear solver NSO1A performed only moderately successfully against
our set of test problems. NS01A solved 79% of the test problems with state
dimension n = 3, but only 55% of the problems with state dimension
n = 4. NSO1A requires an input parameter, MAXFUN, to be set, which
determines the number of iterations NSO1A will carry out before returning
control to the calling program. The majority of unsuccessful returns for
NSO1A on our set of test problems were coded with an exit error that the
limit MAXFUN on iteration steps for NSO1A had been reached. Increasing
MAXFUN would have increased the impact of NSO1A on our set of test
problems, but at an expense of increased CPU time.

There were test problems for which NSO1A exited unsuccessfully with
other error codes (failure to detect decrease in the residuals and encoun-
tering fixed points of F'). While these particular test problems could have
been restarted at alternate entry points, we did not pursue that approach.

(III) DNEQNF

DNEQNTF performed less than adequately against the problems we used for
comparative evaluation. DNEQNF solved only 36% of the test problems
with state dimension n = 3 and 34% of the problems with state dimension
n = 4. The exit errors for DNEQNF were usually that the initial entry
point was ill-chosen and that further progress could be initiated only after
supplying a more suitable entry point.

The last two methods which we considered constructed covering paths
for the homotopy

F(Y(#)=(1-t)F(A), 0<t <1, (3.1)

with A being the standardized entry point we used for reference with all of
the test problems.



(IV) ODE

As noted in Section 2, rather than treat (3.1) directly we can transform
(3.1) to
F(Y(t)dY(t)/dt = —F(A), 0 <t <1, (3.2)

and solve (3.2) for the trajectory which passes through A. We note that
since the z; components of A are ordered and since the solution trajectory
to (3.2) must lie in a component of G, the z; components of SF must also
be ordered, i.e., the description of the Jacobian in Proposition 2.1 implies
that the z; components of Y(¢) cannot change their relative ordering for
0<¢t<1. '

Solving (3.2) using the differential equation solver ODE was substan-
tially more expensive (in terms of accessed CPU time) than the above
methods. The time required to follow the homotopy trajectory usually ac-
cumnulated because of a ‘hooking’ effect which was forced on the trajectory
because the components z; of Y(t) cannot change their relative ordering
for 0 <t < 1. On the otherhand, using ODE we were able to solve each
of the problems in our test set with state dimension n = 3 and 99% of the
problems with state dimension n = 4.

When we considered more general problems where the state dimension
of the problem was also to be determined, the effects of the ‘hooking’ on the
CPU time required by ODE became more pronounced. While ODE was
generally successful for problems with state dimensions n < 5, the program
generally stagnated at higher state dimensions, 6 < n < 8.

(V) Predictor-Corrector

An alternative viewpoint for using the homotopy (3.1) is to implement a
more direct path following procedure to move from A to SY. We imple-
mented the following predictor-corrector method:

(a) At each iteration of the procedure we construct a polynomial predictor
to move form the current location (Y (¢),t) on the homotopy path to
a new point (Y(t.),t,).

7

(b) Using a modified Newton’s method we then correct back from (Y (¢, J,¢.)
to a point (Y (¢4 ),t.) on the homotopy path.
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(c) We adjust the step size for the next iteration to reflect the relative
error of the previous prediction (primarily in terms of the number of
Newton steps which were required for the correction step).

While there are several choices for predictors in step (a), we chose to use
a form of (two-point) Hermite extrapolation, with which we constructed a
third order polynomial predictor.

We found that if we did not modify Newton’s method and restrict the
size of the Newton correction, we usually jumped from the homotopy path
we were following to a path in an alternative component of G. We employed
a modified trust region approach, which modified the size of the Newton
correction only when the direction and size of the Newton correction would
result (without correction) in jumping paths.

The predictor-corrector scheme described above was very robust and
very fast. While it did not solve every problem in our test set, the exceptions
generally occurred because of coalesing of z; components of the solution.
The predictor-corrector scheme solved 93% of the test problems with state
dimension n = 3 and 83% of the test problems with state dimension n = 4.
In every case it was substantially faster than the ODE program.

When we considered more general problems where the state dimension
was also unknown, the predictor-corrector scheme produced very reliable
results, for state dimensions n < 6. In comparison with the ODE program,
the predictor-corrector scheme was significantly cheaper in terms of use of
CPU time.

For problems with higher state dimensions, 7 < n < 8, the program
suffered difficulties which suggested that a better predictor, such as a higher
order Hermite extrapolator, might be required.
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