
A CONSTRUCTIVE METHOD FOR
NUMERICALLY COMPUTING CONFORMAL

MAPPINGS FOR GEARLIKE DOMAINS

INTRODUCTION

The Riemann mapping theorem asserts that the open unit disk D =

{z| |z| < 1} is conformally equivalent to each simply connected domain G
in the complex plane, whose boundary consists of at least two points, i.e.,

there exists a function f , analytic and univalent function on D , such that

f maps D onto G . More precisely, if do is an arbitrary point in D and go

is an arbitrary point in G, then the Riemann mapping theorem asserts that

there exists a unique conformal mapping f of D onto G such that f(do) =

go and f ′(do) > 0. If the boundary of G is piece-wise analytic and g1 is a point

on the boundary of G, then the uniqueness assertion of the Riemann mapping

theorem can be reformulated alternately as the statement that there exists a

unique conformal mapping f of D onto G such that f(do) = go and f(1) = g1.

The problem of constructing the explicit conformal mapping guaran-

teed by the Riemann mapping theorem is usually difficult, even numerically.

There are constructive proofs [He] of the Riemann mapping theorem, but,

because of their general nature, they often converge only slowly to the desired

solution.

For polygonal domains, i.e., simply connected domains bounded by seg-

ments of straight lines, there is a well-known representation formula, called

the Schwarz-Christoffel formula (see [Ne], p. 189), which the conformal map-

ping functions must satisfy. The difficulty with using the Schwarz-Christoffel

formula to construct the conformal mapping for an explicit polygonal domain

has always been that the formula contains unknown parameters, called the

accessory parameters, which have to be determined before the mapping func-
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tion can be computed. D. Gaier in his monograph [Ga] on conformal mapping

surveyed several methods which had been proposed for solving the accessory

parameter problem and proposed a method for reducing the problem to a

system of nonlinear equations. In 1980 L. N. Trefethen [Tr] devised an ef-

fective procedure for solving the accessory parameter problem and, hence,

constructing the conformal mapping function for a polygonal domain. Tre-

fethen used the geometry of the polygonal domain to construct a constrained

system of nonlinear equations, the solution set of which would be the acces-

sory parameter set.

In [Ba & Pe], following work of A. W. Goodman [Go], necessary and suf-

ficient conditions were given for representing the conformal mapping function

which would map D onto a image domain G which is gearlike. A gearlike do-

main is a simply connected domain which contains the origin and is bounded

by arcs of circles centered at the origin and by segments of straight lines

through the origin. (See Figure 1.) We note that the logarithmic image of a

gearlike domain is a periodic polygonal domain. Hence, one possible method

for solving the conformal mapping problem for a gearlike domain would be

to apply an adaption of Trefethen’s method to the logarithmic image. In

this paper we propose to directly use the representation formula for gearlike

functions and a development motivated by the work of Trefethen to construct

a procedure for numerically computing the conformal mapping function for

a gearlike domain. The kernel of that procedure is an algorithm which pre-

scribes a system of nonlinear equations whose solution set is the unknown

accessory parameter set for the gearlike domain being considered.

2



Figure 1

We will give several examples using this procedure for constructing both

the forward mappings from D to explicit gearlike domains Gi and the in-

verse mappings from the domains Gi back to D. We will conclude with an

application which shows that a coefficient conjecture of R. W. Barnard [Ba]

fails.

There are several recent references which give alternate constructions

for related conformal mapping problems. K. P. Jackson and J. C. Mason

[Ja & Ma] treated a problem of crack stress around holes in two-dimensional

plates by mapping the crack region conformally to the exterior to the unit

circle. They used an adaption, made by Trefethen [Tr, 83], of the SCPACK

programs Trefethen developed for solving Schwarz-Christoffel mapping prob-

lems. Recently, P. Bjørstad and E. Grosse [Bj & Gr] devised a method for

constructing the conformal mapping functions (from the unit disk) to circu-

lar arc polygons. A circular arc polygon is a polygon where the sides of the

polygon are allowed to be general arcs of circles. Their method applies an

o.d.e. solver to a specific second order differential equation which represents
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the circular arc polygon mapping function.

GEARLIKE DOMAINS

Let G be a gearlike domain in the complex plane with n sides. Let wk, 1 ≤
k ≤ n, denote the vertices of G, some of which may lie at infinity. For

convenience, we will also denote wn as w0. For each finite vertex wk let παk

denote the interior angle at wk and let πβk denote the exterior angle at wk.

By definition αk and βk satisfy the relation αk + βk = 1. For each infinite

vertex wk set βk = 1. We note, in this latter case, that πβk is generally not

the exterior angle at wk.

For example, in Figure 2 at the corner vertices w3 and w6 we have β3 = 1
2

and β6 = −1
2
. At w2, the tip of a slit, the external angle is −π, so β2 = −1.

Figure 2

In [Ba & Pe] we showed that the following representation formula de-
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scribes the conformal function f mapping D onto G with f(0) = 0

zf ′(z)

f(z)
=

n∏
k=1

(1− z̄kz)−βk (1)

where the points zk are the preimages on |z| = 1 of the vertices wk and where

the following constraint conditions must be satisfied:

βk ∈
{
−1,−1

2
, 0,

1

2
, 1

}
, 1 ≤ k ≤ n, (i)

n∑
k=1

βk = 0, (ii)

and
n∑
k=1

βkArg(zk) ≡ 0 (mod π). (iii)

We note that if G is gearlike, then it is easily seen for the mapping func-

tion f we must have that zf ′(z)/f(z) is either pure real or pure imaginary

on the boundary of D. If a function f satisfies (i) and (ii), but not (iii),

then zf ′(z)/f(z) will map D to a domain bounded by radial segments which

emanate from the origin, but which are twisted away from the coordinate

axes and, hence, f will map D to a domain which is not gearlike.

Equation (1) can be solved to explicitly represent the conformal mapping

f on D as

f(z) = cz exp


∫ z

0

[
n∏
k=1

(1− z̄kw)−βk − 1

]
w

dw

 . (2)

In the representation formula (2) the parameter c and the prevertices

zk, 1 ≤ k ≤ n, are accessory parameters which must be determined before

the conformal mapping f can be computed. For each accessory parameter

set satisfying (i), (ii) and (iii) a function f given by (2) will map D onto
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a gearlike domain f(D) whose local boundary at each vertex w(k) = f(zk)

will be conformally homotopic to the local boundary of G at wk. However,

corresponding sides of f(D) and G which are arcs of circles will generally not

have the same modulus and corresponding sides of f(D) and G which are

segments of straight lines will generally not have the same argument.

Using the second formulation for uniqueness in the statement of the Rie-

mann mapping theorem we may suppose that the prevertex zn = 1, i.e.,

that f(1) = wn, and that wn is finite. The later assumption can always be

made via a suitable reindexing of the vertices of G. The parameter c can be

computed directly. If we let

w∗ = exp


∫ 1

0

[
n∏
k=1

(1− z̄kw)−βk − 1

]
w

dw


then

c = wn/w
∗.

Thus, there remain n−1 unknown accessory parameters to be calculated.

To determine the accessory parameters we will construct a system of n − 1

real equations, dependent on the parameters z1, . . . , zn−1, whose solution set

will be the correct accessory parameter set.

If the domain G is starlike, then there exists a unique function f which

will map D onto G as determined by the vertices {wk} and the exterior

angles {βkπ}. However, if the domain G is non-starlike,there exist several

functions which will map D onto a domain determined only by specifying

the vertices {wk} and the exterior angles {βkπ}— precisely because arg(wk)

is not uniquely determined. However, only one of these functions will be

globally univalent on D. In order to construct the univalent mapping f

from D to G, i.e., in order to solve the accessory parameter problem for the

univalent mapping, we will need to measure the total changes in argument
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over the circular sides of G rather than measuring the absolute arguments at

the vertices of G. We will denote the change in argument over a circular side

of G from vertex wk−1 to wk by ∆ arg(wk) and we will denote the total change

in argument for the mapping function f over the arc (on the boundary of D)

from zk−1 to zk by ∆ arg(w(k)), where, again, w(k) = f(zk).

For each vertex wk, 1 ≤ k ≤ n − 2, there are four (mutually exclusive)

possibilities that can arise:

(a) the vertex wk lies at infinity;

(b) the vertex wk is finite and lies on a radial side of G which comes in

from infinity (as the boundary of G is traversed positively), but not at

the end of the radial side, i.e., the interior angle at wk is π;

(c) the vertex wk is finite and lies at the end of a radial side of G, which

comes in from infinity;

(d) the vertex wk is otherwise finite.

If (a) holds, then we will not impose any condition on w(k); however, the

geometry of G will force the next vertex to be finite.

If (b) holds, then we will impose a modulus condition on w(k) and require

that

|w(k)| − |wk| = 0. (3a)

If (c) holds, then we will impose two conditions on w(k). We will require

that the modulus condition (3a) holds and we will require that

Arg(w(k))− Arg(wk) = 0. (3b)

In the last case, then either |wk| = |wk−1| or else Arg(wk) = Arg(wk−1).

If |wk| = |wk−1|, then we will require

∆ arg(w(k))−∆ arg(wk) = 0, (3c)
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otherwise we will require (3a) to hold.

The above construction will generate n − 2 equations if the vertex wn−2

does not lie at infinity. If, however, wn−2 does lie at infinity, then one ad-

ditional equation will need to be generated. The vertex wn−1 must be finite

and satisfy condition (c). Thus, we can add one equation to the system by

adding the modulus equation (3a) with k = n− 1.

The system of equations generated at this point may not be sufficient to

characterize the accessory parameter set for the correct mapping function,

especially in the case that G is unbounded and non-starlike. We may need

to replace one of the equations in the system with a secondary equation to

control the total argument change for the mapping function or to control

the location of the tip of a slit. There are three cases which need to be

considered.

Case 1. The vertex wn−1 or wn lies at the end of a radial side of G going

out to infinity and the interior angle at that end is π/2. If wn−1 lies at the end

of the radial side, then the last equation in the system of type (3b) must be

replaced by an argument condition (3c) with k = n−1. Alternately, if wn lies

at the end of the radial side, then either wn−1 is the tip of a circular slit or the

boundary of G has a right angle corner at wn−1. If wn−1 is the tip of a circular

slit, then the last equation in the system of type (3a) must be replaced by

an argument condition (3c) with k = n; otherwise, the last equation in the

system of type (3b) must be replaced by an argument condition (3c) with

k = n.

Case 2. Case 1 does not apply and condition (c) holds for some vertex

wk0 , 1 ≤ k0 ≤ n− 1, such that wk0 lies on the component of the boundary of

G which contains wn and the boundary of G has a right angle corner at wk.

If wn−1 is the tip of a radial slit, then the argument equation (3b) generated

by condition (c) at k = k0 must be replaced by a modulus condition (3a)

with k = n − 1. Alternatively, if k0 = n − 1, then the modulus equation

(3a) generated by condition (c) at k = k0 must be replaced by an argument
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condition (3c) with k = n. Alternately, if wn−1 lies at the tip of a circular

slit, then the last equation in the system of type (3a) must be replaced by an

argument condition (3c) with k = n − 1. Otherwise, if the segment on the

boundary of G between wn−2 and wn−1 is a circular arc, then the argument

equation (3b) generated by condition (c) at k = k0 must be replaced by an

argument condition (3c) with k = n− 1.

Case 3. The domain G is bounded and the vertex wn−1 lies at the tip of a

slit. The above construction does not completely characterize the geometry

of G, i.e., the generated mapping function f may not satisfy f(zn−1) = wn−1.

The last equation of the system, that is, the equation representing the vertex

wn−2, must be replaced by a condition determined by the geometry at the

vertex wn−1. If wn−1 lies at the tip of a radial slit, then we will require

that (3a) holds for k = n − 1, otherwise we will require that (3c) holds for

k = n− 1.

To determine the full set of n − 1 accessory parameters we need to add

one additional equation to the above system of equations. We have not yet

imposed the constraint condition (iii) in the representation formula for gear-

like mappings. While we could solve (iii) for one of the prevertices (in terms

of the others) and thus reduce the number of unknown accessory parameters

from n − 1 to n − 2, our computational experience has been that we have

been able to treat a variety of problems (i.e., solve the accessory parameter

problem) using a full set of n−1 equations, with its extra degree of freedom,

which we could not successfully treat using a reduced set of n− 2 equations.

We will, therefore, impose (iii) as the n− 1st system equation.

Let us note that if the interior angle at wn−1 is π, then the generated

mapping f may not satisfy f(zn−1) = wn−1. No auxiliary condition can be

added to the above construction without over-determining the problem. On

the other hand, the point wn−1 can be removed from the set of vertices of G
without changing the geometry of G. We will require, in the presentation of
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the vertices of G, that βn−1 be not 0.

COMPUTATION

In the actual practice of solving the nonlinear system of equations (3)

and computing the conformal mapping f, we have generally employed the

techniques described by Trefethen. (See [Tr],[ pp. 86-90].) The given form

(3) requires solving for the unknown complex prevertices zk on the unit circle

|z| = 1. (As with the vertices, we will also denote zn as z0.) It is numerically

more convenient to transform the points zk to their arguments θk by

zk = eiθk , 0 ≤ θk ≤ 2π.

The arguments θk are, however, severely constrained by a set of linear in-

equalities because the points zk are ordered around the unit circle. The

ordering constraints on (3) can be removed by transforming the arguments

θk to a set of unconstrained variables y
k

via the equations

yk = log
θk − θk−1
θk+1 − θk

, 1 ≤ k ≤ n− 1, (4)

where we take θ0 to be Arg(z0) = 0. Because the arguments θk in (4) are

coupled, the transformation can be inverted to recover the arguments θk from

the images y
k
.

At each step in the iteration we will calculate from the unconstrained

variables yk, 1 ≤ k ≤ n−1, a set of arguments θk and then a set of prevertices

zk. (The prevertex zn is fixed at 1.) Finally, we will calculate the values of

the n− 1 nonlinear equations (3) for the current set of prevertices.

In the computation of the values f(zk), we generally choose a path for

the integration in (2) which is the straight line segment [0, zk] in D. The

integrand in (2) will have a singularity at both 0 and at zk. However, the

singularity at 0 is removable and can be controlled directly. The singularity

at zk is of the form (1 − z̄kz)−βk where βk can take on only one of five

possible values. Normally, such a singularity in an integral could be easily,
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and highly accurately, treated by Gauss-Jacobi quadrature. However, there

may be, and typically there are, other prevertices zj clustered near zk, which

could affect the accuracy of the quadrature result. Trefethen described a

type of compound Gauss- Jacobi quadrature (see [Tr], [p. 87]) which divides

the path of integration into subpaths, where the length of each subpath is

dependent on how closely other prevertices zj are clustered to zk. This type

of compound Gauss-Jacobi quadrature has produced both highly accurate

and efficient quadrature results.

We have used the library subroutine GAUSSQ by G. H. Golub and J.

H. Welsch [Go & We] to calculate the nodes and weights for the Gauss-

Jacobi quadrature. We have usually set the number of nodes, NPTSQ, to be

computed by GAUSSQ at 8. Since the compound Gauss- Jacobi quadrature

always divides the path of integrations into two halves and one of the halves

may be further subdivided, dependent on the distribution of the current set

of prevertices zk, we achieve, in practice, at least 16 nodes for integration on

each path.

To solve the system of unconstrained nonlinear equations we have used the

library subroutine NS01A by M. J. D. Powell [Po], which employs a hybrid

between the method of steepest descent (initially) and Newton’s method

(terminally).

While the solution driver which calls NS01A can pass specialized initial

sets of prevertices, should such information be available, the general initial-

ization does not take into account any information about the geometry of the

particular gearlike conformal mapping problem. In general, the initialization

allocates a set of initial prevertices uniformly distributed around the unit

circle.

Two of the control parameters required by NSO1A are: DSTEP, the

step size used by NS01A to calculate the Jacobian of (3) by finite difference

methods – generally fixed at 10−8 and TOL, the convergence criterion for

returning from NS01A to the calling program after having successfully solved
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(3). The value of TOL is closely related to the number of nodes NPTSQ

selected for the compound Gauss-Jacobi quadrature. For a problem with

vertices close to unit norm TOL is typically set at 10−(NPTSQ+1).

Once the accessory parameters have been determined, values of the map-

ping function f can be computed for given initial points z in D or on the

boundary of D. In either case, the values are computed by using compound

Gauss-Jacobi quadrature. While the value of f at a point z can always be

computed using (2) directly, if z is near a point z∗, z∗ 6= 0, where the value

of f is known, then the value f(z) can be alternately computed as

f(z) =
f(z∗)

z∗
z exp


∫ z

z∗

[
n∏
k=1

(1− z̄kw)−βk − 1

]
w

dw

 .

The point z∗ can be one of the prevertices corresponding to a known finite

vertex of G or the point z∗ can be point where the value of f has been

previously computed.

Values for the inverse mapping function from the gearlike domain G to

the unit disk D can also be generated. Let w be in G or on the boundary of G.
If, for z = f−1(w), a nearby initial estimate z∗ can be given, then Newton’s

method can be employed to solve for z. (The value of the derivative of f

can be calculated from equation (1).) On the other hand, when no initial

estimate z∗ is known, we can rewrite equation (1) as

dw

dz
=
w

z

n∏
k=1

(1− z̄kz)−βk (5)

where w = f(z). The univalence of the mapping function implies that equa-

tion (5) can inverted to obtain

dz

dw
=
z

w

n∏
k=1

(1− z̄kz).+βk (6)
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Equation (6) can be viewed as an ordinary differential equation which lifts

a straight line segment [w̃, w] in G to a solution curve in D from a point

z̃ = f−1(w̃) to the point z. The point w̃ can be any point in G provided

that the straight line segment [w̃, w] lies entirely in G. To solve the ordinary

differential equation we have used the library subroutine ODE by Shampine

and Gordon [Sh & Go]. The code in ODE treats real differential equations,

which requires that we transform (6) to a coupled pair of real differential

equations.

We have, following Trefethen, combined the above two approaches, un-

less an initial estimate is known for which Newton’s method can be applied

directly. We will first solve (6), starting typically at w̃ = 0, to obtain a low

order approximation z∗ to z. We will then follow up using Newton’s method

to move from z∗ to a final approximation of z with high order accuracy.

It is important that not only are we able to construct the approximate

numerical mapping by solving the accessory parameter problem, but that we

are able to estimate the accuracy of the approximation we have generated.

After the nonlinear solver NS01A returns a solution for the accessory param-

eter problem we check the accuracy of the computed solution by checking at

each finite node wk the difference |wk − w(k)|. At each infinite node wk we

check the difference ‖wk−1−wk+1| − |w(k− 1)−w(k+ 1)‖. An error routine

returns the maximum of the above tested differences as an error estimate for

the accuracy of the generated mapping function.

EXAMPLES

In Figure 3 we show conformal mappings generated at several of the itera-

tive steps which arise in constructing the conformal mapping in Figure 2. We

start the process with no assumption about the geometry of the prevertices

for the image domain G in Figure 2, i.e., we begin with an initial uniform

distribution about the unit circle for the prevertices. Also, we have set the

number of nodes for the compound Gauss-Jacobi quadrature at NPTSQ = 8
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and have set the level of desired accuracy at TOL = 10−8. The plots in Fig-

ure 3 show several contours (images of circles centered at the origin) and the

images of the six radial segments which join the origin to the prevertices.

As Trefethen noted, the conformality of the mappings at the origin can be

used to interpolate on the plots in Figure 3 the arguments of the prevertices

via the arguments of the images of the radial segments at they approach the

origin. The example in Figure 3 is typical in that it shows some of the pre-

vertices to be clustering as the iterations move towards the mapping solution

at stage I20.

I5 I7

Figure 3
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I8 I9

I11 I20

Figure 3 (cont.)

In Figures 4 and 5 we show examples which illustrate the dispersion of

the contours for several sets of bounded and unbounded gearlike domains.

In each case the contours are the images of the circles |z| = r, 0 < r < 1.

In Figures 6 and 7 we show examples which illustrate the dispersion of
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the level sets for the inverse mappings for the gearlike domains depicted in

Figures 4 and 5. In each case the level sets are the images under f−1 of

|w| = R, R > 0. The ticks shown on the boundary of D mark the location

of the prevertices zk.

Finally, let us note one difficulty which we have encountered. The only

requirement for applying the above algorithm to a gearlike domain mapping

problem is that one of the finite vertices must be distinguished as the last

vertex, wn, (and, or course, then wn−1 must not be removable). There may be

for a given gearlike domain several vertices which could be so distinguished.

Our experience, however, in implementing the algorithm, i.e., in solving the

nonlinear system of parameter equations via NS01A, has been that frequently

only one of the several choices (for the distinguished vertex) has led to a

tractable system of equations.
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(a) (b)

(c) (d)

Figure 4
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(a) (b)

(c) (d)

Figure 5

18



(a) (b)

(c) (d)

Figure 6
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(a) (b)

(c) (d)

Figure 7
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APPLICATION

Let St be the class of analytic univalent functions f on D, normalized by

f(0) = 0 and f ′(0) = 1, which map D to an image domain which is starlike

with respect to the origin. For M ≥ 1 let D(M) = {z| |z| < M} and let

St(M) be the subclass of St of functions which satisfy the property that

f(D) ⊂ D(M). Let f ∈ St(M) and have a power series representation

f(z) = z +
∞∑
n=2

anz
n.

R. W. Barnard and J. L. Lewis [Ba], [Ba & Le] considered the problem of

finding
max Rea3

f ∈ St(M)
. (7)

They showed that if M ≥ 5 and if f is extremal for the coefficient problem

(7), then f is the Pick function in St(M), i.e., f maps D onto the disk D(M)

minus a radial slit on the negative real axis. (See Figure 8a.) If 1 < M ≤ e,

they showed that if f is extremal for (7), then f is the SRT (square root

transform) Pick function in St(M), i.e., f maps D onto the disk D(M) minus

a pair of symmetric radial slits on the imaginary axis. (See Figure 8b.)

a b c

Figure 8

While they were not able to solve the extremal problem for e < M < 5,

they were able to show that the extremal function must map D onto D(M)
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minus a pair of real-axis symmetric radial slits. (See Figure 8c.) They noted

that if M = 3, then the third coefficient for the Pick function in St(M)

and the third coefficient for the SRT Pick function in St(M) are the same.

Lewis posed the coefficient problem (7) for e < M < 5 as Problem 6.65

in [Ca, Cl & Ha] and Barnard conjectured [Ba] for M ≥ 3 that (7) was

maximized by the Pick function in St(M) and for 1 < M ≤ 3 that (7) was

maximized by the SRT Pick function in St(M).

To support that conjecture the problem was posed to show numerically

for e < M < 5,M fixed, and for the real-axis symmetric double radial slit

mappings in St(M) that Rea3 was concave as a function of the argument α

of the omitted slit, π/2 ≤ α ≤ π. Each such function f is a bounded gearlike

mapping and can be represented by (from the geometry of the image domain)

zf ′(z)

f(z)
=

√
p22(z)

p1(z)p3(z)
= Q(z)

where pj(z) = 1 − 2xjz + z2, xj = Rezj = cos θj, zj = eiθj and 0 ≤ θ1 ≤
θ2 ≤ θ3 ≤ π. If we let

Q(z) = 1 +
∞∑
k=1

qkz
k

then

a3 =
q21 + q2

2

where

q1 = x1 + x3 − 2x2

q2 =
3(x1 + x3)

2 − 4(x1x2 + x2x3 + x3x1)

2
.

We specifically considered the case M = 3. As we constructed the values

of Rea3, for incremental values of argument α of the omitted slit, we found

(using a value for TOL = 10−8), however, (see Table 1) that the conjecture

was not correct. Indeed, Table 1 suggests for M = 3 that Rea3 is unimodal
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as a function of α over the interval [π/2, π] and that the maximum value

occurs for some α in [0.80π, 0.90π].

We considered various values for M and found evidence to suggest that

the argument α of the omitted slit for the extremal function for (7) appears

to vary monotonically with M from π/2 to π as M varies from e to 5.

Table 1

α/π Rea3

0.500 0.88888889
0.550 0.89011287
0.600 0.89358764
0.650 0.89873157
0.700 0.90461073
0.750 0.91000424
0.800 0.91353195
0.850 0.91388099
0.900 0.91009490
0.950 0.90174616
1.000 0.88888889

Barnard remarked, after seeing the numerical results in Table 1, that it

should be possible to show analytically that the conjecture was false. In-

deed, a long, extensive calculus argument can be given which shows that the

conjecture fails for 2.83912 < M ≤ 3. Specifically, the argument shows for

2.83912 < M that Rea3 takes on a local minimum value at the SRT Pick

function over the set of real-axis symmetric double radial slit mappings in

St(M).

We would like to thank Professor R. W. Barnard his helpful comments

and suggestions during the preparation of this paper.
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