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Abstract

We investigate the relative efficiency of the empirical “tail median” vs. ”tail mean” as
estimators of location when the data can be modeled by an exponential power distribution
(EPD), a flexible family of light-tailed densities. By considering appropriate probabilities
so that the quantile of the untruncated EPD (tail median) and mean of the left-truncated
EPD (tail mean) coincide, limiting results are established concerning the ratio of asymptotic
variances of the corresponding estimators. The most remarkable finding is that in the limit
of the right tail, the asymptotic variance of the tail median estimate is approximately 36%
larger than that of the tail mean, irrespective of the EPD shape parameter. This discovery
has important repercussions for quantitative risk management practice, where the tail median
and tail mean correspond to value-at-risk and expected shortfall, respectively. To this effect,
a methodology for choosing between the two risk measures that maximizes the precision of
the estimate is proposed. From an extreme value theory perspective, analogous results and
procedures are discussed also for the case when the data appear to be heavy-tailed.

Keywords: value-at-risk; expected shortfall; generalized quantile function; exponential power
distribution; extreme value theory; asymptotic relative efficiency; rate of convergence.

1 Introduction

The quantification of risk is an increasingly important exercise carried out by risk management
professionals in a variety of disciplines. These may range from assessing the likelihood of struc-
tural failure in machined parts, and catastrophic floods in hydrology and storm management, to
predicting economic loss in insurance, portfolio management, and credit lending companies. In the
area of (financial) quantitative risk management (QRM), increasing demand by regulatory bodies
such as the Basel Committee on Banking Supervision1 to implement methodically sound credit
risk assessment practices, has fostered much recent research into measures of risk. See McNeil
et al. (2005) for a classic treatment of QRM, and Embrechts and Hofert (2014) and Embrechts
et al. (2014) for recent surveys on QRM and risk measures relating to the Basel documents,
respectively.

As the term risk is synonymous with extreme event, it is naturally desirable to determine
or estimate high percentiles of the (often potential) distribution of losses. To be useful in quick
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decision making, a single number is required, and two common measures in use by credit lenders
include Value-at-Risk (VaR), and Conditional Value-at-Risk (CVaR), along with percentiles typ-
ically in excess of the 95th (Basel III, 2013). The term CVaR was coined by Rockafellar and
Uryasev (2000), but synonyms (and closely related variants) for it also in common usage include:
“expected shortfall” (Acerbi and Tasche, 2002), “tail-conditional expectation” (Artzner et al.,
1999), and “average Value-at-Risk” (Chun et al., 2012), or simply “tail mean”. Since the term
expected shortfall (ES) appears to have become the most prevalent synonym for CVaR, we will
adhere to the term ES.

VaR and ES are widely used to measure and manage risk in the financial industry (Jorion, 2003;
Duffie and Singleton, 2003). With the random variable X representing the distribution of losses,
given a probability level 0 < β < 1, VaRβ is simply the β quantile of X, and hence is the value
beyond which higher losses only occur with probability 1− β. Using similar notation, ESβ is the
average of this 1−β fraction of worst losses. To define these precisely, let X be a continuous real-
valued random variable defined on some probability space (Ω,A, P ), with cumulative distribution
function (CDF) F (·) and probability density function (PDF) f(·). The quantities µ and σ2 will
denote, respectively, the mean and variance of X, and both are assumed to be finite. The VaR
and ES of X at probability level β are then defined as follows.

Definition 1 (VaR al level β).

VaRβ(X) ≡ ξβ(X) = F−1(β). (1)

Definition 2 (ES at level β).

ESβ(X) ≡ µβ(X) = E(X|X ≥ ξβ) =
1

1− β

∫ ∞
ξβ

xf(x)dx =
1

1− β

∫ 1

β
F−1(u)du. (2)

When no ambiguity arises we write simply ξβ and µβ. Note that although the quantile function
F−1(·) is well-defined here due to the assumed strict monotonicity on F (·), in general ξβ has to
be defined through the generalized quantile function F−(·) (Embrechts and Hofert, 2013). In
addition, the definition of µβ implicitly assumes the existence of the first absolute moment, E|X|.

There has been much debate and research over the past decade over which of these two
measures should be the industry standard2. Some of the issues at stake concern trade-offs between
conceptual simplicity (VaR), versus better axiomatic adherence and mathematical properties (ES),
since these measures are often used in intricate optimization schemes; see e.g., Follmer and Schied
(2011), and Pflug and Romisch (2007). While there is a general consensus that ES is more easily
optimized (primarily due to convexity), Yamai and Yoshiba (2002, 2005) report that “...expected
shortfall needs a larger size of sample than VaR for the same level of accuracy.”. This basic fact
is echoed in the review paper of Embrechts and Hofert (2014) when comparing confidence limits
for VaR vs. ES based on extreme value theory (EVT). This an expected consequence of their
definition that ensures ξβ ≤ µβ, and as such we would point out that it is not an entirely fair
comparison since for a given β the two measures are in effect measuring different parts of the tail
of X.

A fairer comparison of the estimation “accuracy” of VaR versus ES would result if the two
measures were forced to coincide, a study that to the best of our knowledge has not yet been
undertaken. This situation is depicted in Figure 1, which shows the relative positions of the
quantiles ξβ and ξα for a PDF with β < α so that µβ = ξα. This implicitly assumes the existence
of a function g(·), such that

α = g(β) ≡ gβ. (3)

2See for example [http://gloria-mundi.com/], a website serving as a resource for Value-at-Risk and more generally
financial risk management.
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Loosely speaking, we then have the “tail mean” (µβ) coinciding with the “tail median” (ξα),
where the usage of these terms is meant to convey that µβ is a “mean-like” quantity and ξα a
“median-like” quantity. Note that we are effectively adjusting the probability levels so that the
mean of the left-truncated PDF at ξβ coincides with the untruncated α-quantile.

Figure 1: Illustration of relative positions of V aRβ = ξβ and V aRα = ξα in the right tail of a
PDF, so that ESβ = µβ coincides with V aRα.
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The primary aim of this paper is to shed light on this matter, by considering the asymptotic
relative efficiencies of the empirical (or nonparametric) estimators. When a random sample of
size n with order statistics X(1) ≤ · · · ≤ X(n) is available, consistent estimators of VaR and ES
are respectively,

ξ̂β = X(kβ), and µ̂β =
1

n− kβ + 1

n∑
r=kβ

X(r), (4)

where kβ = [nβ] can denote either of the two integers closest to nβ (or any interpolant thereof).
In the process we will also generalize the age-old statistical quandary of which of the sample
median or sample mean is the “best” estimator of centrality, since these estimators are obtained
in the limit as β → 0 in (4). Nowadays the accepted solution to this quandary is to use either an
M-estimator or an L-statistic, the key idea being to combine elements of the efficiency of the mean
with the robustness of the median (Maronna, 2011). However, these solutions involve subjective
choices, and are therefore not as “clean” as the simple mean or median.

To effect this comparison, we will consider sampling from the exponential power distribution
(EPD); a flexible model for distributions with exponentially declining tails. The EPD is also
variously called Subbotin, Generalized Error Distribution (Mineo and Ruggieri, 2005), and Gen-
eralized Normal Distribution (Nadarajah, 2005), with slight differences in the parametrizations.
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The version we adopt here is similar to the EPD of Gomez et al. (1998), but following the simpler
parametrization of Sherman (1997). This means the standard member of the family has mean
and median zero, with a PDF3 given by

f(x; p) =
p

2Γ(1/p)
exp{−|x|p}, p ∈ (0,∞). (5)

Remark 1. As we shall see later, there is no loss of generality by restricting attention to the
standard member of the EPD family. This is because both VaR and ES satisfy the properties
of translation invariance and positive homogeneity (Pflug, 2007), whereby, for X the standard
member, a ∈ R and b > 0 with Y = a + bX, we have that ξβ(Y ) = a + bξβ(X) and µβ(Y ) =
a + bµβ(X). These properties transfer also to the empirical estimators in (4), since they are L-
statistics. From this it follows that the ratio of their variances, they key metric we will be looking
at through equation (20), is invariant to location-scale shifts.

The EPD has finite moments of all orders, and is hence “light-tailed” in EVT parlance.
Parameter p controls the shape, so that we obtain for p = 2 a normal with variance 1/2, and for
p = 1 a classical Laplace with variance 2. For p < 2 and p > 2 we obtain respectively, leptokurtic
(heavier than Gaussian) and platikurtic (lighter than Gaussian) tail characteristics. In the limit
as p → ∞ the EPD becomes U [−1, 1], a uniform distribution on [−1, 1]. As p → 0 the limit is
degenerate, as the PDF converges to zero everywhere on the real line.

The non-Gaussian members of the elliptical family of distributions (which includes EPD) have
recently been investigated by Landsman and Valdez (2003) as providing, from a QRM perspective,
a more realistic model than the Gaussian. However, the elliptical family covers a wide range of
distributions all the way from light-tailed (e.g., EPD) to heavy-tailed (e.g., Student t), and thus
have to be used with caution if appropriate moments are to exist. Rather, an EVT-based approach
has recently guided much recent research with regard to the type of VaR vs. ES comparisons we
are proposing. Recall that a distribution with CDF F (x) is said to be heavy-tailed4 if

lim
t→∞

1− F (tx)

1− F (t)
= x−θ, (6)

for some θ > 0 known as the tail index. (Light-tailed distributions correspond to θ = 0.) From
the Basel III (2013) accord, it has become apparent that for light-tailed distributions, VaR0.99 ≈
ES0.975, a fact which can be generalized to VaR1−s ≈ ES1−es, for small s (Danielsson and Zhou,
2016). This suggests that for high quantiles from light-tailed distributions, an approximation to
the function in (3) is

α = g(β) ≈ e− 1 + β

e
, for large β. (7)

An illuminating plot of β vs. g(β) is displayed in Figure 2, where g(β) ≡ g(β, p) is given
by (16) for the EPD. Naturally, we have limβ→0 g(β, p) = 0.5 for all p, so that the mean (µ0)
coincides with the median (ξ0.5) for the symmetric EPD family. The upper solid line in the plot
corresponds to the Basel III function (7), whereas the lower solid line represents the limiting
U [−1, 1] distribution when p =∞. As expected, g(β, p) converges to the Basel III line as β → 1.

The basic questions we are posing concerning the relative efficiency of estimators of VaR
vs. ES, or tail median vs. tail mean, are interesting also from a purely academic point of view,
and to statistical inference in general. As will be seen later, the central message of this paper is

3The PDF, CDF, quantiles, and random values from the standard EPD in (5) can be obtained with the “PE2”
function from the R package gamlss.dist.

4When discussing tail characteristics, we will reserve the term “heavy” for the EVT sense according to (6) when
θ > 0, and “leptokurtic/platikurtic” to distinguish between grades of heaviness in relation to the Gaussian among
the light-tailed distributions (θ = 0).
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Figure 2: Plot of the g(β, p) function defined in (16) vs. β, for select values of p. The upper solid
line is the Basel III g(β) function defined in (7), and the lower solid line the limiting uniform
distribution when p =∞.
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that for sufficiently “light” tails the tail mean is more efficient than the tail median, when the
population quantiles that they are estimating coincide. This appears to remain true whether one
is in a light-tailed (θ = 0) or heavy-tailed (θ > 0) regime. To obtain more details about the relative
efficiency, it seems inevitable that one has to dive into a particular parametric family. The EPD
was therefore chosen for reasons of tractability and flexibility in modeling the light-tailed portion
of this spectrum of tail characteristics. To replicate this study for the heavy-tailed portion would
at present appear to pose serious analytical challenges.

The rest of the paper is organized as follows. Notation and necessary preliminary results are
established in Section 2. This is followed in Section 3 by statements of the main theorems and
perspectives on their meaning. A discussion concerning the implications of these results for QRM
practice is presented in Section 4. The proofs of the theorems appear in Appendix Sections C
and D.

2 Preliminary Results

In this section we derive some preliminary results that will be useful in subsequent sections. Many
results will rely on variants of the Gamma function. Let γ(a, x) and Γ(a, x) denote the incomplete
Gamma functions defined by

γ(a, x) =

∫ x

0
e−tta−1dt, and Γ(a, x) =

∫ ∞
x

e−tta−1dt, (8)
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and note that γ(a, x) + Γ(a, x) = Γ(a), the usual (complete) Gamma function. The properties of
these functions are extensively documented in e.g., Abramowitz and Stegun (1972).

For notational convenience, define for f(x) the EPD PDF in (5) and n = 0, 1, 2, . . .,

Fn(x) =

∫ x

−∞
tnf(t)dt, Gn(x) =

∫ ∞
x

tnf(t)dt, An =

∫ ∞
−∞

tnf(t)dt. (9)

Using this notation, the EPD CDF satisfies F ≡ F0, and consequently A0 = 1. We note that for
all x we have

Fn(x) +Gn(x) = An (10)

Now, for n odd or even, we can, by making the change of variable tp = u, use (8) to rewrite Gn as

Gn(x) =
1

2Γ(1/p)
Γ

(
n+ 1

p
, xp
)
, for x > 0, (11)

and note that Gn(0) = [2Γ(1/p)]−1Γ((n+ 1)/p). For the case that n is odd, the integrand in (9)
is odd, and hence, we have

Gn(x) =

∫ −x
x

tnf(t)dt+Gn(−x) =
1

2Γ(1/p)
Γ

(
n+ 1

p
, |x|p

)
, for x < 0. (12)

For the case that n is even, the integrand in (9) is even, and hence Gn(0) = 1
2An. Now, using

(10) and (11) yields

Fn(x) =


Gn(−x), for all x;

An −Gn(x) =
Γ(n+1

p
)

Γ(1/p) −
1

2Γ(1/p)Γ
(
n+1
p , xp

)
, for x > 0;

Gn(−x) = 1
2Γ(1/p)Γ

(
n+1
p , |x|p

)
, for x < 0,

(13)

Gn(x) = An − Fn(x) =
Γ
(
n+1
p

)
Γ(1/p)

− 1

2Γ(1/p)
Γ

(
n+ 1

p
, |x|p

)
, for x < 0. (14)

Consequently, and noting that F0(ξβ) = β, we can, by making the change of variable u = F0(t),
rewrite µβ defined in (2) as

µβ =
1

1− F0(ξβ)
G1(ξβ) =

G1(ξβ)

G0(ξβ)
, (15)

whence the functional relationship between α and β in (3) can be written in closed form as

α = g(β, p) = F0(µβ) = F0

(
G1(ξβ)

G0(ξβ)

)
. (16)

Notational expediency will often prompt us to write gβ ≡ g(β, p).
Denote by 1A(x) the indicator function for set A, which takes on the value 1 if x ∈ A,

and 0 otherwise. Define now the random variable obtained by upper tail truncation of X at
ξβ, Yβ ≡ X | X ≥ ξβ, and note that µβ in (15) is in fact the mean of Yβ, since its PDF is
fYβ (y) = (1 − β)−1f(y)1[ξβ ,∞)(y). The variance of Yβ, which will appear in subsequent sections,
is then given by

σ2
β =

1

1− β

∫ ∞
ξβ

(x− µβ)2 f(x)dx =
1

1− β

∫ 1

β
[F−1(u)− µβ]2du, (17)
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and using (15), (16), and (9), we can rewrite it as

σ2
β =

1

G0(ξβ)

∫ ∞
ξβ

(
x−

G1(ξβ)

G0(ξβ)

)2

f(x)dx =

(
G2(ξβ)

G0(ξβ)

)
−
(
G1(ξβ)

G0(ξβ)

)2

. (18)

Defining for n = 1, 2,

hn =
Gn(ξβ)

G0(ξβ)
, (19)

leads to notationally simpler expressions for several of the above equations.

3 Asymptotic Efficiency of VaR Relative to ES

Appealing to well-known results for order statistics (David and Nagaraja, 2003) we obtain asymp-
totic normality for ξ̂α in the central (or quantile) case of interest here (kα/n → α as n → ∞).
One way to state this result is that for large n,

√
n(ξ̂α − ξα) is approximately Gaussian with

mean zero and variance α(1− α)/f2(ξα), the asymptotic variance. A corresponding result holds
for
√
n(µ̂β − µβ) (Trindade et al., 2007) with the asymptotic variance given by the inverse of the

second fraction on the right of (20). (See also Giurcanu and Trindade (2007) for joint asymptotic
normality of (ξ̂β, µ̂β).) Appealing to these results we obtain the asymptotic relative efficiency
(ARE) of the empirical estimator of VaRα with respect to that of ESβ, as

ARE(ξ̂α, µ̂β) =
asymptotic variance of ξ̂α
asymptotic variance of µ̂β

=
α(1− α)

f2(ξα)
· 1− β
σ2
β + β(µβ − ξβ)2

, (20)

where σ2
β is as defined in (17).

For the purpose of simplifying subsequent discussions, we define ARE(ξ̂α, µ̂β) ≡ H(β, p), where
the function H : D 7→ R highlights the fact that the ARE is ultimately dependent on just these
two parameters, and its domain is given by:

D = (0, 1)× (0,∞). (21)

Then, choosing α = gβ as in (3) to force VaRα and ESβ to coincide, leads to the following closed
form expression for the ARE under random sampling from the EPD.

Lemma 1. If α = gβ is as in (16), then the ARE of ξ̂α with respect to µ̂β as given in (20) is

ARE(ξ̂α, µ̂β) ≡ H(β, p) =
F0(h1)G0(h1)(

p
2Γ(1/p)

)2
exp{−2 (h1)p}

·
G0(ξβ)

h2 − (h1)2 + F0(ξβ) (h1 − ξβ)2 . (22)

Proof. See Appendix Section B.

Several interesting questions now arise, but primarily, when is H(β, p) > 1 so that ES is a
more efficient estimator than VaR? Figure 3 shows a plot of H(β, p) as a function of 0 < β < 1,
for different values of p. Although neither estimator is uniformly better, we do see that for p
greater than about 1.4 (solid line), ES is uniformly more efficient. This uniformity is difficult to
establish rigorously; but we can make concrete statements by investigating the limiting values of
H(β, p) separately for each variable while holding the other fixed. Consider first the cases β → 0
and β → 1, for fixed p. This yields the interesting results of the following theorem.
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Figure 3: Plot of the H(β, p) function defined in Lemma 1 vs. β, for select values of p.
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Theorem 2 (Limiting behavior of the ARE in β). With H(β, p) as defined in Lemma 1, and for
p ∈ (0,∞), we have that:

lim
β→0

H(β, p) ≡ H(0, p) =
3Γ3(1 + 1/p)

Γ(1 + 3/p)
, and lim

β→1
H(β, p) ≡ H(1, p) =

e

2
.

Proof. See Appendix Section C.

The result for H(0, p) agrees with Sherman (1997), where his eff(x̄, x̃) corresponding to the
ARE of the sample mean relative to the sample median, is our 1/H(0, p). We also note (as did
Sherman, 1997) that H(0, p) is an increasing function of p which maps the interval (0,∞) onto the
interval (0, 3). Consequently, there exists a unique p∗ ≈ 1.4074 such that for p < p∗, H(0, p) < 1
and for p > p∗, H(0, p) > 1. Thus, for leptokurtic (platikurtic) distributions, the median (mean)
is a more efficient estimator, where the boundary between these two is exactly p = p∗.

On the other hand, the result H(1, p) = e/2 ≈ 1.36 is remarkable! It says that in the limit
of the right tail, the asymptotic variance of the tail median (VaR) is approximately 36% larger
than that of the tail mean (ES); a result that holds uniformly for all p. Equating “efficiency”
with “reduction in variance”, this translates equivalently into the tail mean being approximately
26% more efficient than the tail median. The implications of this finding are clear: ES is a more
efficient estimator than VaR for the typically high quantiles β that are used in practice.

Although not as interesting from a practical standpoint, the next set of results considers also
the cases p→ 0 and p→∞, for fixed β. In the latter case, we are able to establish the following
theorem.

8



Theorem 3 (Limiting behavior of the ARE as p → ∞). With H(β, p) as defined in Lemma 1,
and for β ∈ (0, 1), we have that:

lim
p→∞

H(β, p) ≡ H(β,∞) =
1 + β

1/3 + β
.

Proof. See Appendix Section D.

In the former case, we are unable to rigorously prove the particular result in question, but the
arguments and graphical evidence presented in Case 3 of Appendix Section D strongly suggest
that the following conjecture holds.

Conjecture 1 (Limiting behavior of the ARE as p→ 0). With H(β, p) as defined in Lemma 1,
and for β ∈ (0, 1), we conjecture that:

lim
p→0

H(β, p) ≡ H(β, 0) = 0.

Interestingly, and in parallel with the second result of Theorem 2, the limiting expression for
H(β, 0) also appears to be independent of the other parameter (β). Note that the expression
for H(β,∞) is a decreasing function of β mapping the interval (0, 1) onto the interval (3/2, 3).
Thus, for the limiting U [−1, 1] distribution obtained when p → ∞, the tail mean would be the
(uniformly) preferred measure for all β. Table 1 summarizes the limiting values of H(β, p) along
the 4 edges defined by {(β, p) : β = 0, 1 and p = 0,∞}. The values obtained at the corresponding
4 corners are shown inside the table, as the limit is approached either horizontally along p for
fixed β, or vertically along β for fixed p. From this it is apparent that the function is continuous
everywhere along β = 0, but discontinuous at each of the two corners: (β = 1, p = 0) and
(β = 1, p = ∞). This points the way to extending the domain of definition of H(β, p) from that
given by (21), to its closure (minus the two corners)

D̄ = {(β, p) ∈ [0, 1]× [0,∞] | (β, p) 6= (1, 0) and (β, p) 6= (1,∞)} , (23)

where we refrain from defining the function at each of the problematic corners in order to circum-
vent any non-uniqueness issues.

Table 1: Limiting values of the H(β, p) function.

H(1, p) = e
2

p = 0 p =∞

H(β, 0) = 0

β = 1
limp→0H(1, p) = e/2 limp→∞H(1, p) = e/2

H(β,∞) = 1+β
1/3+β

limβ→1H(β, 0) = 0 limβ→1H(β,∞) = 3/2

β = 0
limp→0H(0, p) = 0 limp→∞H(0, p) = 3

limβ→0H(β, 0) = 0 limβ→0H(β,∞) = 3

H(0, p) = 3Γ3(1+1/p)
Γ(1+3/p)

Finally, Figure 4 displays a contour plot of H(β, p) as a function of its two arguments. The
overwhelming message from this plot is the fact that apart from the steep “cliff” at the left in
the region p < p∗, the function is always larger than unity. Thus the tail mean is uniformly more
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Figure 4: Contour plot of H(β, p) as a function of its arguments.
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efficient (regardless of β) than the tail median for distributions with p > p∗ (platikurtic). We can
refine this further by considering a particular β, e.g., if β = 0.975 (Basel III), then H(β, p) > 1
for p > 0.23.

Remark 2. In EVT terminology, a result for the ARE in (20) corresponding to heavy-tailed
distributions with tail index θ > 0 in the intermediate case where kβ/n → 1 as n → ∞, was
derived by Danielsson and Zhou (2016):

ARE(ξ̂α, µ̂β) =
1− β
1− α

· θ − 2

2(θ − 1)
.

By comparison, recall that the type of convergence for the number of order statistics at which
the summand (4) starts in the central case, kβ = [nβ], is that kβ/n → β as n → ∞, which is
fundamentally different, and in our view more relevant for practical QRM.

4 Discussion

We established limiting results concerning the ratio of asymptotic variances of the classical em-
pirical estimators of location, tail median vs. tail mean, in the context of the flexible EPD family
of distributions. The most remarkable result concerned the fact that in the limit of the right
tail, the asymptotic variance of the tail median is approximately 36% larger than that of the
tail mean, irrespective of the EPD shape parameter. Equating “efficiency” with “reduction in
asymptotic variance”, this translates equivalently into the tail mean being approximately 26%
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more efficient than the tail median. The findings also offer a generalization of the solution to the
age-old statistical quandary concerning which of the sample median vs. sample mean is the most
efficient estimator of centrality.

The central tenet of this paper is that for sufficiently “light” tails, the tail mean is a more
efficient estimator than the tail median, when the population quantiles that they are estimating
coincide. This appears to remain true whether one is in a light-tailed (tail index θ = 0) or heavy-
tailed (tail index θ > 0) regime. From a practical perspective, this message may have important
repercussions for QRM practitioners with regard to choice of risk measure, VaR or ES, as follows:

• If the data on hand is believed to follow a light-tailed distribution (θ = 0). Proceed by
fitting an EPD via, e.g., maximum likelihood. Guided by efficiency considerations, the
corresponding choice of risk measure in implementing Basel III (where α = 0.99 and β =
0.975) would then be dictated by ascertaining whether or not the estimated value of the
EPD shape parameter, p, exceeds 0.23. For other risk quantile levels α, the corresponding
β can be determined from Figure 2 or equation (16), whence the appropriate choice can be
made from Figure 4 or equation (22), bearing in mind that for p > 1.4074 ES is always more
efficient.

• If the data follows a heavy-tailed distribution (θ > 0). Remark 2 can be used to determine
which of VaR/ES is more efficient, given an estimate of θ. However, relating α and β to
yield the same value of the risk measures like we did through the function g(β, p) for the
light-tailed case of EPD, still requires distribution-specific knowledge. Thus, for example,
setting (1 − β)/(1 − α) = 2.5 ≈ e as suggested by Basel III, we see that ARE(ξ̂α, µ̂β) > 1
only for θ > 6 (Danielsson and Zhou, 2016), and so for really heavy tails it is VaR that is
less variable than ES at these specific quantiles. A further problem with this EVT approach
is the fact that comparisons are made for the intermediate rather than central quantile case,
whereas we argue the latter is more realistic than the former in practical applications since
the probability corresponding to VaRβ is converging to β instead of 1 (Remark 2). Rather,
the intermediate quantile case is considered merely because it leads to a general tractable
solution.

There is therefore room for improvement in both approaches. The light-tailed case could ben-
efit from a more general result for limp→0H(1, p) that would be independent of the distributional
family, of the type mentioned for the heavy-tailed case. On the other hand, the heavy-tailed
situation might benefit from a similar analysis as was done for light-tailed, where the focus is
the central rather than intermediate quantile case. At present, both extensions would seem to be
offer substantial analytical challenges.

A Overview of Proof Techniques

Throughout the proofs in the remaining sections, we will make liberal use of certain mathematical
results. We document the primary ones here in order to add transparency to the proofs.

(i) “Big O” and “little o” notation. For sequences of real numbers {un} and {vn}, recall that
un = O(vn) if and only if un/vn is bounded, and un = o(vn) if and only if limn→∞ un/vn = 0.
Rules for manipulating these can be found in any advanced text. In particular, note that if
xn = o(un) and yn = o(vn), then xn + yn = o(max{un, vn}), and xnyn = o(unvn).

(ii) Asymptotic equivalence of (non-random) sequences. For real-valued sequences a(x) and
b(x), we write a(x) ≈ b(x) if and only if a(x)/b(x) → 1 as x → ∞. An equivalent way of
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stating this definition (which points the way to arithmetic manipulations) is:

a(x) ≈ b(x) ⇐⇒ a(x)− b(x)

a(x)
= o(1).

Note however that for bounded sequences this simplifies: a(x) ≈ b(x)⇔ a(x)− b(x) = o(1).

(iii) Establishing limits of ratios. For sufficiently small x ↓ 0, recall from the geometric series
expansion that

1

1 + x
=

1

1− (−x)
= 1− x+ x2 + o(x−2).

Suppose now that η(z) = 1 + a/z + b/z2 + o(z−2), where z → ∞. A standard technique
for dealing with limits of ratios is to set x = a/z + b/z2 + o(z−2), and to then employ the
representation

1

η(z)
=

1

1 + x
= 1−

(
a

z
+

b

z2
+ o(z−2)

)
+
a2

z2
+ o(z−2) = 1− a

z
+
a2 − b
z2

+ o(z−2). (24)

B Proof of Lemma 1

Define the numerators (V1, V2) and denominators (W1,W2) by writing:

H(β, p) =
α(1− α)

f2(ξα)
· 1− β
σ2
β + β(µβ − ξβ)2

≡ V1

W1
· V2

W2
.

Now compute each of these 4 terms as follows.

V1: From (16) and (19) we have α = F0(µβ) = F0(h1), whence noting that A0 = 1, we obtain, in
view of (10), 1−α = A0−F0(h1) = G0(h1). Putting these together gives: V1 = α(1−α) =
F0(h1)G0(h1).

V2: By definition, β = F0(ξβ), whence the fact that A0 = 1 and (10) gives: V2 = 1 − β =
A0 − F0(ξβ) = G0(ξβ).

W1: ξα = F−1(α), thus since it follows by (16) that α = g(β, p) = F0(h1), we have ξα =
F−1(F (h1)) = h1 ≥ 0, since ξα = µβ ≥ 0 (see Figure 1). Therefore, substituting this into
(5) gives:

√
W1 = f(ξα) = p exp{−(h1)p}/[2Γ(1/p)].

W2: From (18) and (19), σ2
β = h2 − h2

1, and from (15) and (19), µβ − ξβ = h1 − ξβ. These then

give: W2 = σ2
β + β(µβ − ξβ)2 = h2 − h2

1 + F0(ξβ)(h1 − ξβ)2.

C Proof of Theorem 2

To assess the limiting behavior of H(β, p), we take the approach of considering the limits of its
individual components, separately for the cases β → 0 (Case 1) and β → 1 (Case 2). A key
idea is to make the change of variable β = F0(ξβ) early on in each case. This sheds light on the
connections to the Gamma and incomplete Gamma, thus naturally allowing one to invoke the
properties and asymptotics of these functions. In all cases, the basic strategy will be to ascertain
the limits of each piece of H(β, p) as given in Lemma 1, which are then combined to obtain the
desired result.
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Case 1: β → 0 (for fixed p)

We can rewrite (20), using α = gβ so that µβ = ξα, as H(β, p) = P1 ·Q1, where

P1 =
α(1− α)

f2(ξα)
, Q1 =

1− β
σ2
β + β(µβ − ξβ)2

.

If we let β → 0, then µβ → 0 which is the average value of F−1
0 over (0, 1). Hence, as β → 0,

we have gβ → 1/2 which is the value of F0 at x = 0. Clearly as β → 0, f(µβ) → f(0) = p
2Γ(1/p) .

Thus, P1 → 1
4/
[

p
2Γ(1/p)

]2
as β → 0.

Define ξβ by F0(ξβ) = β. Then, β → 0 implies ξβ = F−1
0 (β) → −∞. Considering the term

β(µβ − ξβ)2 in Q1, we have, since µβ → 0 as β → 0,

lim
β→0

β(µβ − ξβ)2 = lim
β→0
−2µββF

−1
0 (β) + β[F−1

0 (β)]2. (25)

Making a change of variable β = F0(ξβ) and applying l’Hopital’s rule, we note, for k = 1, 2,

lim
β→0

β[F−1
0 (β)]k = lim

ξβ→−∞
F0(ξβ)ξkβ = lim

ξβ→−∞

F0(ξβ)

ξ−kβ
= lim

ξβ→−∞

p
2Γ(1/p)e

−|ξβ |p

−kξ−k−1
β

= 0.

Hence, the limit in (25) is 0. Finally, we note that as β → 0, σ2
β → σ2

0 =

∫ 1

0
[F−1

0 (u)]2du. Making

a change of variable, u = F0(t), we can write

σ2
0 =

∫ ∞
−∞

p

2Γ(1/p)
t2e−|t|

p
dt =

p

Γ(1/p)

∫ ∞
0

t2e−t
p
dt =

Γ(3/p)

Γ(1/p)
.

Thus, Q1 → 1/[Γ(3/p)/Γ(1/p)] as β → 0.

Hence, we have as β → 0,

lim
β→0

H(β, p) = lim
β→0

P1 ·Q1 =
1/4[
p

2Γ(1/p)

]2 ·
1

Γ(3/p)
Γ(1/p)

=
1

p2

[Γ(1/p)]3

Γ(3/p)
=

3[Γ(1 + 1/p)]3

Γ(1 + 3/p)
. (26)

Case 2: β → 1 (for fixed p)

We can rewrite (22) as H(β, p) = P2 ·Q2 where

P2 =
G0(h1)G0(ξβ)(

1
2Γ(1/p)

)2
exp{−2 (h1)p}

, Q2 =
F0(h1)

p2[h2 − (h1)2 + F0(ξβ) (h1 − ξβ)2]
.

Define ξβ by F0(ξβ) = β. Then, β → 1 implies ξβ → ∞. In particular, we have, since ξβ > 0,
from (11) that

Gn(ξβ) =
Γ(n+1

p , ξpβ)

2Γ(1/p)
, hn =

Gn(ξβ)

G0(ξβ)
=

Γ(n+1
p , ξpβ)

Γ(1/p, ξpβ)
, for n = 1, 2.

Defining,

s(a, z) = 1 +
a− 1

z
+

(a− 1)(a− 2)

z2
+ o

(
1

z2

)
, z →∞, (27)
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we can represent Γ(a, z), see Erdelyi et al. (1953, p. 135, (6)), as

Γ(a, z) =
zae−z

z
s(a, z), z →∞. (28)

Consequently, we have, using (27) in the second step,

Gn(ξβ) =
1

2Γ(1/p)

(ξpβ)(n+1)/pe−ξ
p
β

ξpβ
s

(
n+ 1

p
, ξpβ

)

=
1

2Γ(1/p)

ξn+1
β e−ξ

p
β

ξpβ

(
1 +

(n+ 1)/p− 1

ξpβ
+ o

(
1

ξpβ

))
,

whence, employing the technique of (24) to deal with the term 1/G0(ξβ), gives

hn =
Gn(ξβ)

G0(ξβ)
= ξnβ s

(
n+ 1

p
, ξpβ

)/
s

(
1

p
, ξpβ

)
(29)

= ξnβ

(
1 +

(n)/p

ξpβ
+ o

(
1

ξpβ

))
.

In particular,

G0(ξβ) =
1

2Γ(1/p)

ξβe
−ξpβ

ξpβ

(
1 +

1/p− 1

ξpβ
+ o

(
1

ξpβ

))
,

h1 = ξβ

(
1 +

1/p

ξpβ
+ o

(
1

ξpβ

))
,

which implies G0(ξβ) → 0, F0(ξβ) → 1, and h1 → ∞, as ξβ → ∞. Furthermore, we have, once
again using (24), that

G0(h1) =
1

2Γ(1/p)

h1e
−(h1)p

(h1)p

(
1 +

1/p− 1

hp1
+ o

(
1

hp1

))
. (30)

Consequently, we have G0(h1)→ 0 and F0(h1)→ 1 as ξβ →∞. Thus, we have, as ξβ →∞,

P2 =
G0(h1)G0(ξβ)

( 1
2Γ(1/p))2 exp{−2 (h1)p}

≈ h1

e(h1)p(h1)p
ξβ

eξ
p
βξpβ

e2(h1)p = (h1)1−pξ1−p
β e(h1)p−ξpβ

≈ ξ2−2p
β e(h1)p−ξpβ . (31)

Now, note that for the exponent of the exponential in (31) we have

(h1)p − ξpβ = ξpβ

(
1 +

1/p

ξpβ
+ o

(
1

ξpβ

))p
− ξpβ = ξpβ

(
1 + p

1/p

ξpβ
+ o

(
1

ξpβ

))
− ξpβ = 1 + o(1),

whence, e(h1)p−ξpβ → e as ξβ →∞. Thus, we have as ξβ →∞

P2 ≈ ξβ2−2p · e (32)

Considering the terms in Q2, we have, as ξβ →∞,

(h1 − ξβ)2 =

[
ξβ

(
1 +

1/p

ξpβ
+ o

(
1

(ξβ)p

))
− ξβ

]2

= ξ2
β

(
1/p

ξpβ
+ o

(
1

(ξβ)p

))2

=
ξ2−2p
β

p2

(
1 + o

(
1

(ξβ)p

))
,
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and finally, using (29),

h2 − (h1)2 = ξ2
β

[
s(3/p, ξpβ)s(1/p, ξpβ)− s(2/p, ξpβ)s(2/p, ξpβ)

s(1/p, ξpβ)s(1/p, ξpβ)

]
. (33)

Since, using the second order terms in (27),

s(3/p, z)s(1/p, z)− s(2/p, z)s(2/p, z) =
1/p2

z2
+ o

(
1

z2

)
,

s(1/p, z)s(1/p, z) = 1 +
2/p− 2

z
+ o

(
1

z

)
,

and, again using (24) to deal with the inversion of the denominator,

s(3/p, z)s(1/p, z)− s(2/p, z)s(2/p, z)
s(1/p, z)s(1/p, z)

=
1/p2

z2
+ o

(
1

z2

)
,

we have, as ξβ →∞,

h2 − (h1)2 ≈
ξ2−2p
β

p2
.

Thus, we have as ξβ →∞,

Q2 ≈
1

p2[
ξβ

2−2p

p2
+

ξβ
2−2p

p2
]

(34)

Combining, (32) and (34), we have as ξβ →∞,

H(β, p) = P2 ·Q2 ≈
[1− 0]ξ2−2p

β · e

p2

[
ξ2−2p
β

p2
+ (1− 0)

ξ2−2p
β

p2

] , (35)

and thus H(β, p)→ e

2
as ξβ →∞ (⇔ β → 1).

D Discussion of Conjecture 1 and Proof of Theorem 3

For continuity with Cases 1 and 2 above, let Case 3 denote the limiting result of p→ 0 given by
Conjecture 1, and Case 4 the limiting result of p→∞ stated in Theorem 3. In Case 3 we are only
able to rigorously show that the limiting EPD PDF is zero everywhere, whence it follows that
the corresponding CDF is converging to 1/2. For the resulting convergence of H(β, p) to zero as
p→ 0, we have only graphical evidence. Case 4 is tackled by considering the limiting distribution
that results when p → ∞. The computation of H(β,∞) is then straightforward for the limiting
U [−1, 1]. Usage of the (well-defined) generalized quantile function to invert the CDF permits
the interchange of limits and integrals, via the Lebesgue Dominated Convergence theorem, thus
justifying the U [−1, 1] computation.

Case 3: p→ 0 (for fixed β)

Note that since the EPD PDF, f(x; p) = p[2Γ(1/p)]−1 exp{−|x|p}, is the product of term 1 and
term 2, where term 2 is the exponential, it converges (uniformly) to 0 as p→ 0. This follows from
the fact that term 2 is uniformly bounded by 1 for all x and all p > 0, whereas term 1 converges
to 0 as p→ 0. Since the total area under the PDF is 1 (for any p), then for smaller p the PDF has
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to spread further out to capture this total area. Since half the area occurs for x ∈ (−∞, 0) and
half for x ∈ (0,∞), this in turn forces the CDF F (x; p) to converge to 1/2 for each x as p→ 0.

It is not obvious how this fact implies that H(β, p) → 0 as p → 0. A critical complicating
factor for constructing an analytical proof for this case is the fact that although β is fixed, ξβ is
not fixed (as a function of p), and, indeed, exhibits the following limiting behavior:

lim
p→0

ξβ =


−∞, if β < 0.5,

0, if β = 0.5,

+∞, if β > 0.5.

Possibilities we investigated included efforts to establish asymptotic expansions for the incomplete
Gamma functions in the representation of Gn(ξβ) given σ2

β. Nevertheless the result seems to be
true, as is apparent from Figure 5.

Figure 5: Plot of H(β, p) as a function of p for select values of β.
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Case 4: p→∞ (for fixed β)

Denote by f(x; p) and F (x; p) the EPD PDF and CDF, respectively, for given shape parameter p.
Formally define f(x;∞) = limp→∞ f(x; p) and F (x;∞) = limp→∞ F (x; p). Note that f(x;∞) =
1
21[−1,1](x) is a uniform distribution on [−1, 1]. Thus, F (x;∞) = 1+x

2 1[−1,1](x) + 1(1,∞)(x), and
we have from the Lebesgue Dominated Convergence theorem (Royden, 1988) that:

lim
p→∞

F (x; p) = F (x;∞), for x ∈ R. (36)
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Throughout, we will let F−(u;∞) denote the generalized inverse of F (x;∞), also known as the
generalized quantile function (Embrechts and Hofert, 2013). Thus, we have F−(u;∞) = 2u − 1
for 0 < u ≤ 1. Noting (now and for the remainder of the proof) that in the limit when p =∞ we
are dealing with a U [−1, 1] distribution, straightforward calculations yield

µβ(∞) ≡ µ(β,∞) =
1

1− β

∫ 1

β
F−(u;∞)du = β, gβ(∞) ≡ g(β,∞) = F (µ(β;∞),∞) =

1 + β

2
,

σ2
β(∞) ≡ σ2(β,∞) =

1

1− β

∫ 1

β
[F−(u;∞)− µ(β,∞)]2du =

(1− β)2

3
,

and hence,

H(β,∞) ≡
gβ(∞)(1− gβ(∞))

[f(µβ(∞);∞)]2
· 1− β
σ2
β(∞) + β[µβ(∞)− F−(β;∞)]2

=
1 + β

1/3 + β
.

Having thus demonstrated thatH(β,∞) exists, we will now show that indeed limp→∞H(β, p) =
H(β,∞), and thus verify Theorem 3. Recall from Section 2 that

µβ = µ(β, p) =
1

1− β

∫ 1

β
F−(u; p)du, gβ = g(β, p) = F (µ(β, p); p),

σ2
β = σ2(β, p) =

1

1− β

∫ 1

β
[F−(u; p)− µ(β, p)]2du.

For 0 < δ < 1, define

en(δ) = lim
p→∞

∫ ∞
δ

tnf(t, p)dt,

and note that, since limx→0 xΓ(x) = limx→0 Γ(1 + x) = 1, we have, setting x = 1/p, that

limp→∞
p

2Γ(1/p) = 1/2. Since, for n = 0, 1, 2 and for p ≥ 2 and t ≥ 1, we have tne−t
p ≤ e−tp/2 ≤ e−t,

we see that

en(δ) = lim
p→∞

∫ ∞
δ

tnf(t, p)dt = 1/2

∫ ∞
δ

tn1[−1,1](t)dt =
1− δn+1

2(n+ 1)
. (37)

(This follows by noting that since the integrand on the left hand side of (37) is bounded by the
(integrable) function e−t, we can, applying the Lebesgue Dominated Convergence theorem, bring
the limit inside the integrand.) Now define B = B(p) by F (B; p) = β. Then, making a change of
variable u = F (t; p) we obtain

µβ = µ(β, p) =
1

1− β

∫ ∞
B(p)

tf(t; p)dt, gβ = g(β, p) = F (µ(β, p); p),

σ2
β = σ2(β, p) =

1

1− β

∫ ∞
B(p)

(t− µ(β, p))2f(t; p)dt.

Since en(δ) given by (37) is continuous in δ and (by an analogous argument) F (x; p) is also
continuous in x, the convergence in (36) (in the appropriate topology) for x = µ(β; p), where
0 < β < 1, implies that

lim
p→∞

B(p) = lim
p→∞

F−(β; p) = F−(β;∞) = 2β − 1,
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whence we then have that, assembling these and earlier results,

lim
p→∞

µ(β, p) = lim
p→∞

1

1− β
e1(B(p)) =

1

1− β
e1(2β − 1) = β,

lim
p→∞

g(β, p) = lim
p→∞

F (µ(β, p); p) = F (β;∞) =
1 + β

2
,

lim
p→∞

σ2(β, p) = lim
p→∞

1

1− β
[
e2(B(p))− 2µ(β, p)e1(B(p)) + µ2(β, p)e0(B(p))

]
=

1

1− β
[
e2(2β − 1)− 2βe1(2β − 1) + β2e0(2β − 1)

]
=

(1− β)2

3
.

Thus, we obtain

lim
p→∞

H(β, p) = H(β,∞) =
1 + β

1/3 + β
. (38)
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