
Proceedings of the International Conference on Geometric Function Theory,
Special Functions and Applications (ICGFT)

The Verification of an Inequality
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Abstract. In a recent paper, we verifed a conjecture of Mej́ıa and Pom-
merenke that the extremal value for the Schwarzian derivative of a hyperbol-
ically convex function is realized by a symmetric hyperbolic “strip” mapping.
There were three major steps in the verification: first, a variational argu-
ment was given to reduce the problem to hyperbolic polygons bounded by at
most two hyperbolic geodesics; second, a reduction was made to hyperbolic
polygons bounded by exactly two symmetric hyperbolic geodesics; third, for
hyperbolic polygons bounded by exactly two symmetric hyperbolic geodesics
a computation was made, using properties of special functions, to find the
maximal value of the Schwarzian derviative.

In between the second and third steps, an assertion was made that “using
an extensive computational argument which considers several cases” the prob-
lem of computing the Schwarzian derivative for hyperbolic polygons bounded
by exactly two symmetric hyperbolic geodesics could be reduced to comput-
ing the Schwarzian derivative for hyperbolic polygons bounded by exactly two
symmetric hyperbolic geodesics under the assumption that the argument z of
the Schwarzian derviative satisfied the restriction 0 ≤ z < 1. In this paper,
we provide a verification for that assertion.
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1. Introduction

Hyperbolic convexity is a natural generalization of euclidean convexity; a
region G in the Poincaré model D of the hyperbolic plane is hyperbolically
convex if for any two points in G, the hyperbolic geodesic segment between
them lies entirely in G. Such regions arise naturally in Teichmüller theory, for
example, since the fundamental domains of Fuchsian groups are hyperbolically
convex [3, 5].

A conformal map f : D→ D is hyperbolically convex if its range is hyperbol-
ically convex. Hyperbolically convex functions have been extensively studied by
Ma and Minda [6, 7] and Mej́ıa and Pommerenke [8–12], as well as Beardon [3]
and Solynin [16, 17], among others. One frequently cited open problem was to
find for hyperbolically convex functions a sharp bound on the Schwarz norm

||Sf ||D = sup{|Sf (z)|η−2
D (z) : z ∈ D},
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Figure 1. The extremal domains for maximizing the Schwarz
norm in euclidean (left), spherical (center), and hyperbolic (right)
geometry.

where ηD(z) = 1
1−|z|2 is the hyperbolic density of D and Sf is the Schwarzian

derivative

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

The Schwarz norm of an analytic function f has long been a primary tool
in understanding its geometric behavior. For example, ||Sf ||D = 0 if and only
if f is a Möbius transformation. Thus ||Sf ||D is thought of as measuring how
closely the geometric behavior of f resembles that of a Möbius transformation.
Since the image of D under a Möbius transformation must be a disc, ||Sf ||D also
measures the difference between the conformal geometry of f(D) and that of a
disc. Lehto has used this idea to great effect, producing a pseudo-metric on the
set of all simply connected proper subdomains of C. See Lehto’s book [5], for
example, for a detailed discussion.

Nehari showed that if f(D) is convex (in the euclidean sense), then ||Sf ||D ≤ 2,
with equality if and only if f(D) is an “infinite strip” bounded by two parallel
lines [15]. Similarly, Mej́ıa and Pommerenke showed that the extremal domain
for spherically convex functions is a “spherical strip” [9].

The problem of finding a similar bound for the Schwarz norm of hyperbol-
ically convex functions has been intensely studied by a number of authors, in-
cluding Ma, Minda, Mej́ıa, Pommerenke and Vasilev [6–8, 11–13]. Mej́ıa and
Pommerenke [8] found partial results on the bound and conjectured that the
extremal value of ||Sf ||D is attained by a map of the form

(1.1) fα(z) = tan

(
α

∫ z

0

(
1− 2ξ2 cos 2θ + ξ4

)−1/2
dξ

)
,

where α = π
2K(cos θ)

, and K is the elliptic integral of the first kind. The range of

fα is a “hyperbolic strip” bounded by two geodesics through ± tanh
(
πK(sin θ)
4K(cos θ)

)
and perpendicular to the real axis. See Figure 1.

In [2], we verified Mej́ıa and Pommerenke’s conjecture and completed the
classification of the extremal domains for the Schwarzian in all three of the
classical geometries. Specifically, we proved
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Theorem 1.1. The maximal value of the Schwarz norm for hyperbolically convex
functions is Sfα(0), where

fα(z) = tan

(
α

∫ z

0

(
1− 2ξ2 cos 2θ + ξ4

)−1/2
dξ

)
, α =

π

2K(cos θ)
,

K is the elliptic integral of the first kind, and α is chosen so that cos θ is the
unique critical point of the function

(1.2) g(s) = 4s2 − 2 +
π2

2K2(s)

on (0, 1).

A computer calculation produces a maximal value for the Schwarz norm for a
hyperbolically convex function of approximately 2.383635.

The proof of Theorem 1.1 in [2] can be summarized as follows. The first
step described a class of hyperbolic polygons which is dense in the class of all
hyperbolically convex functions, to which the problem of computing the Schwarz
norm could be reduced. The second step developed, using the Julia variational
formula, two class preserving variations for the described class of hyperbolic
polygons. The third step used the first of the developed variations to reduce the
problem to computing the Schwarz norm for hyperbolic polygons bounded by at
most four “proper” hyperbolic geodesics. The fourth step used the second of the
developed variations to reduce the problem to computing the Schwarz norm for
hyperbolic polygons bounded by at most two “proper” hyperbolic geodesics. The
fifth step showed by explicit calculations that hyperbolic polygons bounded by
exactly one side or by two intersecting sides could not be extremal, i.e., the fifth
step reduced the problem to computing the Schwar norm for hyperbolic polygons
of the form fα as given in equation (1.1). The sixth step gave an argument, using
properties of special functions, which showed that among the functions described
by equation (1.1) a unique extremal exists.

In between steps five and six, an assertion in [2] was made that “using an
extensive computational argument which considers several cases” the problem
of computing the Schwarzian derivative for hyperbolic polygons of the form fα
as given in equation (1.1) could be reduced to computing the Schwarzian deriv-
ative for hyperbolic polygons of the form fα as given in equation (1.1) under
the assumption that the argument z of the Schwarzian derviative satisfied the
restriction 0 ≤ z < 1. In this paper, we provide the details for the verification of
that assertion.

In Section 2 we develop background material on hyperbolic convexity and
the Schwarzian derivative and discuss more of the history of the problem. In
Section 3 we provide the technical details for the verification of the assertion
described above.
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2. Hyperbolic Convexity and Schwarzians

2.1. Hyperbolic Geometry. The unit disc D equipped with the metric

dh(z, w) = inf

{∫
γ

1

1− |z|2
|dz| : γ is a rectifiable curve joining z and w

}
forms a model for the hyperbolic plane [3]. Notice that the Poincaré density

ηD(z) =
1

1− |z|2

goes to infinity as z moves toward the boundary of the disc. Consequently, inte-
grating ηD over curves near the boundary produces large values of the integral.
If z and w do not lie on a ray through the origin, then the euclidean line segment
joining them will produce a larger integral than a curve which bends away from
the boundary. In fact, the infimum will be achieved by an arc of a circle perpen-
dicular to ∂D. Such curves are hyperbolic geodesics. Since disc automorphisms

M(z) = eiθ
z − a
1− az

,

where θ ∈ [0, 2π) and a ∈ D, preserve circles orthogonal to ∂D, they are precisely
the isometries of D.

Any region G conformally equivalent to D also carries a hyperbolic metric
defined in the same manner using the density

ηG(z) =
|f ′(z)|

1− |f(z)|2
,

where f is a conformal map of G onto D. Notice that it doesn’t matter which
map f is chosen as any two such maps must differ by a disc automorphism.

2.2. Convexity. The euclidean notion of convexity generalizes to hyperbolic
regions in an obvious manner.

Definition 2.1. A region Ω ⊂ D is hyperbolically convex if for any two points
z, w ∈ Ω, the hyperbolic geodesic segment joining z and w lies completely in Ω.

Notice that since the disc automorphisms are the isometries of the hyperbolic
plane, the image M(Ω) of Ω under a disc automorphism M is hyperbolically
convex if and only if Ω is hyperbolically convex. The fundamental domains of
discrete groups of disc automorphisms provide a great many useful examples of
hyperbolically convex domains. See Beardon [3] for an extensive discussion of
these regions.

We will call a hyperbolically convex region Ω bounded by a finite number
of either geodesic arcs lying inside D or arcs of ∂D a hyperbolically convex
polygon. We call the bounding geodesic arcs proper sides and the arcs of ∂D
improper sides. For n ≥ 0, we let

Kn = {hyperbolically convex polygons containing 0

and having at most n proper sides} ∪ {0}.
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Definition 2.2. A conformal map f : D→ Ω is called a hyperbolically convex
function if its range is hyperbolically convex. We let H denote the class of all
hyperbolically convex functions that fix the origin and let Hn denote the subset
of functions whose range is in Kn.

2.3. Schwarzians. Much of the geometric behavior of an analytic function is
described by its Schwarzian derivative [4, 5].

Definition 2.3. The Schwarzian derivative (or just “Schwarzian”) of an an-
alytic function f is

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

Proposition 2.4. The Schwarzian of an analytic function is identically 0 if and
only if it is a Möbius transformation. Moreover, the Schwarzian satisfies the
chain rule

Sf◦g = (Sf ◦ g) (g′)
2

+ Sg.

Thus, if M is Möbius, then

SM◦g = Sg.

and

Sf◦M = (Sf ◦M) (M ′)
2
.

Hence the Schwarzian is unchanged by post-composition with a Möbius trans-
formation, but pre-composition produces an extra quadratic factor.

Definition 2.5. Let f be defined on a simply connected region G ( C. The
Schwarz norm of f is given by

||Sf ||G = sup
z∈G

η−2
G (z)|Sf (z)|.

By taking into account the density of the hyperbolic metric, the Schwarz norm
is completely Möbius invariant. It is easy to show for any Möbius M that

ηM−1(G)(z) = ηG(M(z))|M ′(z)|,

and thus
|Sf◦M(z)|
η2
M−1(G)(z)

=
|Sf (M(z))| |M ′(z)|2

η2
G(M(z)) |M ′(z)|2

=
|Sf (w)|
η2
G(w)

.

where w = M(z). Thus

||Sf ||G = ||Sf◦M ||M−1(G)

and

||Sf ||G = ||SM◦f ||G.
In particular, notice that ||Sf ||D is unchanged by disc automorphisms.
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2.4. Geometry of the Schwarzian. Since ||Sf ||D = 0 if and only if f is
Möbius, we can view ||Sf ||D as measuring how close f is to being a Möbius
transformation. Since any Möbius transformation would send D to another disc
or half plane, ||Sf ||D also measures the amount of deformation between f(D)
and a disc. This notion was formalized by Lehto [5] to produce a pseudometric
between regions conformally equivalent to a disc.

There are a number of results that show that if ||Sf ||D is small, then f(D)
possesses disc-like properties. The two most important for our purposes are due
to Nehari [14,15].

Theorem 2.6. If ||Sf ||D < 2, then f is univalent and f(D) is a quasidisc.
Moreover, if f is univalent, then ||Sf ||D ≤ 6.

Theorem 2.7. If f(D) is convex (in the euclidean sense), then ||Sf ||D ≤ 2, with
equality if and only if f(D) is an infinite strip.

Mej́ıa and Pommerenke [9] proved a similar result for spherically convex re-
gions.

Theorem 2.8. If f(D) is spherically convex, then

||Sf ||D ≤ 2(1− σ(f)2),

where

σ(f) = max
z∈D

(1− |z|2) |f ′|
1 + |f |2

.

For a fixed value of σ(f), this maximum value of ||Sf ||D is achieved by a map of

the form fφ(z) = i tanh
(

2φ
π

Log
(

1+z
1−z

))
which takes D onto a “spherical strip,”

that is, a lune bounded by great circles through ±i and making an angle 2φ with
the imaginary axis.

Thus, convex and spherically convex regions cannot be deformed too far from
being a disc in the sense of the Lehto pseudometric, and the regions with the
greatest amount of deformation are strips. It was been conjectured by Mej́ıa and
Pommerenke [8,10,12] that the same must hold for hyperbolically convex regions.
Theorem 1.1 in [2] verified this conjecture for hyperbolically convex regions.

3. Verification

3.1. Preliminaries. A direct computation shows that the Schwarzian deriva-
tive of fα given in (1.1) is

Sfα(z) = 2(c+ α2)
1− 2dz2 + z4

(1− 2cz2 + z4)2
,

where

c = cos(2θ), α =
π

2K(cos θ)
, d =

3 + 2α2c− c2

2(c+ α2)
.
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We note that the parameters c, α, d are functions of an underlying auxillary
parameter θ. We will write α(θ) if we need to emphasize the dependence of α on
θ.

We also note, using symmetry, that the computation of the Schwarz norm

||Sfα||D = sup
z∈D

(1− |z|2)2|Sfα(z)|

is equivalent to finding

(3.1) sup
z∈D+

(1− |z|)22(c+ α2)

∣∣∣∣ 1− 2dz + z2

(1− 2cz + z2)2

∣∣∣∣
where D+ = {z = reiφ : 0 ≤ r < 1, 0 ≤ φ ≤ π}.

The assertion which we need to verify is

Assertion 1. The problem of maximizing

(1− |z|)22(c+ α2)
1− 2dz + z2

(1− 2cz + z2)2

over D+ over all values of θ, 0 < θ < π/2, can be reduced to the problem of
maximizing

(1− x)22(c+ α2)
1− 2dx+ x2

(1− 2cx+ x2)2

over 0 ≤ x < 1 over all values of θ, 0 < θ < π/2.

We note, as an aside, that Theorem 1.1 showed that for this latter problem
the maximum value is greater that 2.

We recall for the reader that in the proof of Theorem 1.1 in [2] it was shown
that the factor c+ α2 in (3.1) satisfies the following conditions:

a. c+ α2 > 0 for 0 < θ < π/2,

b. c+ α2|θ=0 = 1, c+ α2|θ=π/2 = 0,

c. c + α2 is unimodal on 0 < θ < π/2, i.e. there exists a unique θ∗ in
(0, π/2) such c + α2 is strictly increasing on (0, θ∗) and strictly decreasing
on (θ∗, π/2).

The value θ∗ is the unique value so that s = cos θ∗ is the unique critcial point of
equation (1.2). Numerically, θ∗ ≈ 0.218.

Consequently, there exists a unique θ0, θ∗ < θ0 < π/2 such that:

d. 1 < c+ α2 for 0 < θ < θ0,

e. 0 < c+ α2 < 1 for θ0 < θ < π/2.

Numerically, θ0 ≈ 0.554. See Figure 2.
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Figure 2. The curve c+ α2 and the parameters θ∗ and θ0.

3.2. Lemmas. In order to verify Assertion 1, we will need analytic estimates
on the parameter α which is defined in terms of the elliptic integral K. We recall
the following facts about the behavior of elliptic integrals [1, pp. 53-54]

Lemma 3.1. Let K be the complete elliptic integral of the first kind. Then,

1. the function K(y)/ log(e2/
√

1− y2 ) is strictly decreasing from (0, 1) onto
(π/4, 1),

2. for each c ∈ [1/2,∞) the function (
√

1− y2)cK(y) is decreasing from (0, 1)
onto (0, π/2].

As a consequence of Lemma 3.1, we have the following upper and lower bounds
for the parameter α = α(y), where y = cos(θ)

Lemma 3.2. Let α =
π/2

K(y)
. Then,

1. α ≤ 1

1− log(1−y2)
4

, for 0 < y < 1,

2. for each c ∈ [1/2,∞), (
√

1− y2)c < α for 0 < y < 1.

We note that if the upper bound for α in Lemma 3.2 is expanded as a MacLau-
rin series in y, then all of the coefficients in the series expansion, except for the
constant term (which is 1), are negative. Hence, any partial sum of the series
expansion

(3.2)
1

1− log(1−y2)
4

= 1− 1

4
y2 − 1

16
y4 − 7

192
y6 − 19

768
y8 − · · ·

will also provide an upper bound for α.

Finally, to estimate lower bounds for polynomials in two variables with ratio-
nal coefficients we will need the following technical lemma.
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Lemma 3.3. Let p = p(x, y) be a polynomial with rational coefficients defined
on the region R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}, where a, b, c, d are

all rational numbers. Let Mx ≥ max(x,y)∈R
∣∣ ∂p
∂x

(x, y)
∣∣, My ≥ max(x,y)∈R

∣∣∣∂p∂y (x, y)
∣∣∣

and M = max{Mx,My}. Let δ > 0 and suppose Nw, Nh are chosen so that
∆w = (b−a)/Nw ≤ δ, ∆h = (d−c)/Nh ≤ δ. Let L be the lattice L = L(Nw, Nh) =
{(a + i∆w, c + j∆h) : 0 ≤ i ≤ Nw, 0 ≤ j ≤ Nh}. Let m = min(x,y)∈Lp(x, y).
If m ≥Mδ, then p(x, y) ≥ 0 on R.

Proof. Let (x, y) ∈ R. Then there exists (x0, y0) ∈ L such dist((x0, y0), (x, y)) ≤
δ/
√

2. We can write (x, y) = (x0, y0)+s(cos τ, sin τ) where 0 < s ≤ δ/
√

2. Define
p̃(t) = p((x0, y0) + t(cos τ, sin τ)) where 0 ≤ t ≤ s. Then, |p̃′(t)| ≤ M

√
2 for 0 ≤

t ≤ s. Hence, p(x, y) = p̃(t) ≥ p̃(0)−M
√

2 t = p(x0, y0)−M
√

2 t ≥ m−Mδ ≥ 0.

To verify Assertion 1, we will consider the following cases for the parameters
φ, θ and r in (3.1)

Case 1. 0 < φ < π, 0 < r < 1

Case 1a. 0 < θ < θ0

Case 1b. θ0 < θ < π/2

Case 2. φ = π, 0 < θ < π, 0 < r < 1

Case 3. φ = 0, 0 < θ < π , 0 ≤ r < 1

We note that Case 3 is the conclusion of Assertion 1, i.e., Case 3 is the case
which was explicitly detailed in [2]. Hence, we will address the other cases here,
i.e., we will show that for 0 < r < 1 and for φ and θ restricted to either Case 1
or Case 2, then (3.1) is not maximizied.

Let h(r, φ) denote the function in (3.1), i.e.,

h(r, φ) = (1− |z|)22(c+ α2)

∣∣∣∣ 1− 2dz + z2

(1− 2cz + z2)2

∣∣∣∣
Before we begin the verification, we will establish the following lemma which
gives bounds the location of the critical points of h(r, φ).

Lemma 3.4. If 0 < φ < π, then for each fixed θ, 0 < θ < π/2, the function
h(r, φ) has a unique critical point (rθ, φθ) in D+ given by

cosφθ =
c+
√
c2 + 3− d

2
(3.3)

r2
θ + (1− d(c+

√
c2 + 3)rθ + 1 = 0(3.4)

Furthermore, for r0 = min0<θ<π/2 rθ we have r0 ≥ 2/5.



10 Roger W. Barnard and Kent Pearce ICGFT06

Proof. Let H(r, φ) = (1 − r)4XX̄, where X =
1− 2dz + z2

(1− 2cz + z2)2
. Solving simul-

taneously the system of equations

∂H

∂r
= 0

∂H

∂φ
= 0

for the critical points of H yields the conditions that

−4XX̄ + (1− r)X ′X̄ z

r
+ (1− r)XX̄ ′ z̄

r
= 0

X ′X̄iz + XX̄ ′(−iz̄) = 0.

where X ′ denotes
∂X

∂z
. Consequently, we have

2r

1− r
=
zX ′

X
=
−2dz + 2z2

1− 2dz + z2
− 2
−2cz + 2z2

1− 2cz + z2

which implies

(3.5)
1 + r

1− r
=

1− 2(2d− c)z + z2

1− 2dz + z2

1− z2

1− 2cz + z2
.

If we multiply equation (3.5) by (1− r)(1− 2dz+ z2)(1− 2cz+ z2), collect terms
and then set imaginary and real parts equal to zero we obtain

(1− r) sinφ[(d− 2c+ 2 cosφ)r2 − 2(d+ c− cosφ)r(3.6)

+(d− 2c+ 2 cosφ)] = 0

(1 + r){[(d− 2c+ 2 cosφ) cosφ− 1]r2

−2[(2d− c+ cosφ) cosφ− cd− 1]r + [(d− 2c+ 2 cosφ) cosφ− 1]} = 0

Since sinφ 6= 0, then we have, solving these equations simultaneously

2(c− cosφ)(4 cos2 φ− 4(c− d) cosφ+ d2 − 2cd− 3) = 0

Substituting the factor cosφ = c into (3.6) forces r = 1. There is a unique
solution of the factor (4 cos2 φ− 4(c− d) cosφ+ d2− 2cd− 3) = 0 for 0 < φ < π,
namely the solution given in (3.3). Substituting this solution into (3.6) yields
the quadratic constraint in (3.3) on r. Hence, we have, given that sinφ 6= 0, then
there is a unique critical point (rθ, φθ) in D+ which satisfies (3.3).

To show that r0 ≥ 2/5, we will show that each rθ satisfies the inequality
2/5 < rθ < 1. The latter is equivalent to 3 < d(c+

√
c2 + 3) < 49/10.

We note that the inequality 2− c < d would imply that

(2− c)(c+
√
c2 + 3) < d(c+

√
c2 + 3).

It is straightforward to verify that 3 < (2− c)(c+
√
c2 + 3). Also, the inequality

d < 2− c+ 1/2 would imply that

d(c+
√
c2 + 3) < (2− c+ 1/2)(c+

√
c2 + 3).
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It is straightforward to verify that (2− c+ 1/2)(c+
√
c2 + 3) < 49/10.

Thus, it remains to verify that 2− c < d and d < 2− c+ 1/2. First, we note
that

d− (2− c) =
3 + 4α2c+ c2 − c− 4α2

2(c+ α2)
=

q1
2(c+ α2)

.

Making a change of variable c = 2y2 − 1 (where y = cos θ), we have

q1 = (8y2 − 8)α2 + 8 + 4y4 − 12y2

Note that the coefficient of α2 in q1 is negative. Since we are looking for a lower
bound for q1, we replace α = α(y) by an upper bound obtained from Lemma 3.2.
Specifically, we bound α by the 2nd-order partial sum

α ≤ p2 = 1− 1

4
y2.

We have then,

q1 ≥ q∗1 = q1|α=p2 =
y4(1− y2)(16− 8y2 − y4)

32
> 0

Second, we have

(2− c+ 1/2)− d =
5c+ 5α2 − c2 − 4α2c− 3

2(c+ α2)
=

q2
2(c+ α2)

.

Making a change of variable c = 2y2 − 1 (where y = cos θ), we have

q2 = (9− 8y2)α2 + 14y2 − 9− 4y4

Note that the coefficient of α2 in q2 is positive. Since we are looking for a lower
bound for q2, we replace α = α(y) by a lower bound obtained from Lemma 3.2,
with c = 1/2. Specifically, we bound α by

α ≥ p1/2 = (1− y2)1/4.

We have then,

q2 ≥ q∗2 = q2|α=p1/2) = (9− 8y2)
√

1− y2 + 14y2 − 9− 4y4

To show that q∗2 > 0, one isolates the square root, squares the terms in the
resulting inequality and then collects all of the terms to obtain a new inequality
of the form

p(y) = −16y8 + 48y6 − 60y4 + 27y2 > 0

A Sturm sequence argument then verifies p(y) > 0 on the interval 0 < y < 19/20.
On the other hand, clearly q∗2(y) > 14y2 − 9− 4y4 and the latter quartic is non-
negative on 19/20 < y < 1.
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3.3. Verification of Assertion 1. Case 1a. 0 < φ < π, 0 < θ < θ0, 0 < r <
1

We will show that Sfα(0) > h(r, φ). Let

(Sfα(0))2 − |h(r, φ)|2 =
p1(θ, r, x)

q1(θ, r, x)

where x = cosφ. It is easily seen that the numerator p1 is a reflexive 6th-degree
polynomial in r. Making a change of variable r = e−s, we can write

e3sp1(θ, r, x) = p2(θ, cosh s, x)

where p2 is a 3rd-degree polynomial in cosh s. We substitute cosh s = 1 +
2 sinh2(s/2) into p2 to obtain

p3(θ, sinh(s/2), x) = p2(θ, 1 + 2 sinh2(s/2), x)

which is an even 6th-degree polynomial in sinh(s/2). Finally, we make a change
of variable

√
t = sinh(s/2) to obtain

p4(θ, t, x) = p3(θ, sinh(s/2), x)

which is a 3rd-degree polynomial in t.

We have reduced our problem to showing that

p4(t) = p4(θ, t, x) = c3(θ, x)t3 + c2(θ, x)t2 + c1(θ, x)t+ c0(θ, x) > 0

for t > 0 under the assumption that 0 < θ < θ0. It suffices to show that
p4 as a function of t is totally monontonic, i.e., to show that each coefficient
cj = cj(θ, x) ≥ 0, j = 0 · · · 3, where

c3 = 16[(d− 2c)x+ 1]

c2 = 4[(1 + 4c2)x2 + (−12c+ 2d)x+ 2c2 − d2]

c1 = 8[(1− cx)(x− c)2]

c0 = (x− c)4

Since c3 is linear in x, we have that

c3 ≥ min{c3|x=−1 = 16(2c+ 1− d), c3|x=1 = 16(−2c+ 1 + d)}
But,

2c+ 1− d =
3c2 + 2c(c+ α2) + 2(c+ α2)− 3

2(c+ α2)

>
3c2 + 2c− 1

2(c+ α2)
>

0.1

2(c+ α2)

since 0 < θ < θ0 and, hence, c+ α2 > 1. On the other hand,

−2c+ 1 + d = (1− c) + (d− c) = (1− c) +
3

2

1− c2

2(c+ α2)
> 0

Hence, c3 > 0.
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The coefficient c2 is quadratic in x. Let v = v(θ) denote the vertex of the
quadratic c2. Then, we have

c2 ≥ c2|x=v = −2(−4c4 + 9c2 + 2d2c2 − 6dc+ d2 − 2)

1 + 4c2

=
(1− c)2(1 + c)2(14c2 + 40α2c− 9 + 8α4)

2(c+ α2)2(1 + 4c2)

However, we can the rewrite the term 14c2 + 40α2c− 9 + 8α4

14c2 + 40α2c− 9 + 8α4 =

8(c+ α2)2 − 8 + 6c(c+ α2) + 18α2c− 1 >

6c− 1 > 1.1

Clearly, c1 and c0 are non-negative. Hence, p4 ≥ 0.

Case 1.b 0 < φ < π, θ0 < θ < π/2, 0 < r < 1

We need only show that 2 > h(r, φ) for 2/5 < r < 1, because Lemma 3.4
implies that for 0 < r < 2/5, h(r, φ) has no critical points.

Let

4− |h(r, φ)|2 =
p1(θ, r, x)

q1(θ, r, x)

x = cosφ. It is easily seen that the numerator p1 is a reflexive 8th-degree poly-
nomial in r. Making a change of variable r = e−s, we can write

e4sp1(θ, r, x) = p2(θ, cosh s, x)

where p2 is a 4th-degree polynomial in cosh s. We substitute cosh s = 1 +
2 sinh2(s/2) into p2 to obtain

p3(θ, sinh(s/2), x) = p2(θ, 1 + 2 sinh2(s/2), x)

which is an even 8th-degree polynomial in sinh(s/2). Finally, we make a change
of variable

√
t = sinh(s/2) to obtain

p4(θ, t, x) = p3(θ, sinh(s/2), x)

which is a 4th-degree polynomial in t.

We have reduced our problem to showing that

p4(t) = p4(θ, t, x) = c4(θ, x)t4 + c3(θ, x)t3 + c2(θ, x)t2 + c1(θ, x)t+ c0(θ, x) > 0

for 0 < t < 225/1000 under the assumption that θ0 < θ < π/2, where

c4 = −16(c+ α2 + 1)(c+ α2 − 1)

c3 = (α2c2 + 3α2 − c3 + 2α4c− c)x− 2α4 + 4− 4α2c− 2c2

c2 = (12c2 + 8− 4α4 − 8α2c)x2 + (4α2c2 − 36c+ 8α4c+ 12α2 − 4c3)x

− 7c4 + 14c2 − 12α2c+ 4α2c3

c1 = (1− cx)(x− c)2

c0 = (x− c)4
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Since θ0 < θ < π/2, we have 0 < c+ α2 < 1, which implies that c4 > 0.

As in the previous case, c3 is linear in x. Hence we have

c3 ≥ min{c3|x=−1 = (1− c)qm, c3|x=1 = (1 + c)qp}
where

qp = c2 − α2c+ 3c− 2α4 + 3α2 + 4

qm = c2 − α2c− 3c− 2α4 − 3α2 + 4

We can rewrite qp = c2 + 3(c+α2) + 2 + (1−α2(c+α2)) + (1−α4) > 0 since
0 < c+ α2 < 1 and 0 < α < 1.

On the other hand, the estimate for qm is more delicate. Making a change of
variable c = 2y2 − 1 (where y = cos θ), we have

qm = 4y4 − 10y2 + 8− 2α2y2 − 2α2 − 2α4.

Note that all of the coefficients of α in qm are negative. Since we are looking for
a lower bound for qm, we replace α = α(y) by an upper bound obtained from
Lemma 3.2. Specifically, we bound α by the 8th-order partial sum

α ≤ p8 = 1− 1

4
y2 − 1

16
y4 − 7

192
y6 − 19

768
y8.

We have then,
qm ≥ q∗m = qm|α=p8 ,

The polynomial q∗m is a 32nd degree polynomial in y with rational coefficients. A
Sturm sequence argument shows that q∗m has no roots on (0,1]. Hence, qm > 0.

Clearly, c1 and c0 are non-negative.

However, c2 is not. Consequently, it is not immediately obvious that p4(t) > 0
for 0 < t < 225/1000. Let

q = q(t) = c3(θ, x)t2 + c2(θ, x)t+ c1(θ, x).

We will show that q(t) > 0 for 0 < t < 1/4, which will imply that p4(t) > 0 for
0 < t < 225/1000.

We note that it can be shown that c2 = c2(θ, x) is non-negative for θ0 < θ <
π/2 and −4/5 < x < 1. Hence, we will show that q(t) > 0 for θ0 < θ < π/2,
−1 < x < −4/5, and 0 < t < 1/4.

Expanding q in powers of α we have

q = [−4(x− c)2t− 16(1− cx)t2]α4(3.7)

+ [(4c3 − 12c+ 4c2x+ 12x− 8x2c)t+ (−24c+ 24x+ 8c2x)t2]α2

− 8ct2(c+ α2) + q̃(c, x, t)

where q̃ = q̃(c, x, t) is quadratic in t and independent of α.

Clearly the coefficient of α4 negative. It is relatively straightforward to verify
that each of the components (the coefficients of t and t2) of the coefficient of α2

are negative. However, the sign of term −8ct2(c+ α2) depends on the sign of c.
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Case 1-b-1 θ0 < θ < π/4.

In this case c > 0; we will replace (c + α2) in (3.7) by an upper bound 1.
Hence,

q > q0 = [−4(x− c)2t− 16(1− cx)t2]α4

+ [(4c3 − 12c+ 4c2x+ 12x− 8x2c)t+ (−24c+ 24x+ 8c2x)t2]α2

− 8ct2 + q̃(c, x, t)

Since the coefficients of α in q0 are negative, we will replace α by an upper

bound from Lemma 3.2, namely α ≤ p2 = 1 − y2

4
. Hence, we have, making a

change of variable c = 2y2 − 1,

q0 ≥ q∗0(t) = q0|α=p2(t) = d2(y, x)t2 + d1(y, x)t+ d0(y, x)

where

d2(y, x) = (
1

8
y10 − 1

16
y8 − 69y6 + 108y4 − 64y2 + 32)x

− 1

16
y8 − 2y6 − 25

2
y4 − 28y2 + 40

d1(y, x) = (− 1

64
y8 − 3

4
y6 + 55y4 − 64y2 + 24)x2

+ (
1

16
y10 − 1

32
y8 − 69

2
y6 + 54y4 − 96y2 + 48)x

− 1

16
y12 +

49

16
y10 − 2689

64
y8 +

441

4
y6 − 49y4 − 32y2 + 24

d0(y, x) = (−16y2 + 8)x3 + (64y4 − 64y2 + 24)x2

+ (−64y6 + 96y4 − 80y2 + 24)x+ 32y4 − 32y2 + 8.

The coefficents dj(y, x), j = 0, 1, 2 are polynomials with rational coefficients
in y, x subject to the parameter restrictions that cosπ/4 < y < cos θ0 and
−1 < x < −4/5. It can be shown using Lemma 3.3 that d0(y, x) > 0 and
d1(y, x) > 0 for these restricted parameters. Hence, q∗0(t) > 0 if q∗0(1/4) > 0.
However, q∗0(1/4) is a polynomial with rational coefficients in y, x subject to the
same parameter restrictions that cosπ/4 < y < cos θ0 and −1 < x < −4/5.
Using Lemma 3.3 it can be shown that q∗0(1/4) > 0.
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Case 1-b-2 π/4 < θ < π/2

In this case c < 0; we will replace (c+α2) in (3.7) by a lower bound (1 + c)/2.
Hence,

q > q0 = [−4(x− c)2t− 16(1− cx)t2]α4

+ [(4c3 − 12c+ 4c2x+ 12x− 8x2c)t+ (−24c+ 24x+ 8c2x)t2]α2

− 8ct2(1 + c)/2 + q̃(c, x, t)

Since the coefficients of α in q0 are negative, we will replace α by an upper
bound of 1. Hence, we have, making a change of variable c = 2y2 − 1,

q0 ≥ q∗0(t) = q0|α=1(t) = e2(y, x)t2 + e1(y, x)t+ e0(y, x)

Furthermore, for convenience in scaling we will impose a change of variable
x = −1 + 2w/10, where 0 < w < 1. We have then

q∗0(t) = q∗0(y, w, t) = e2(y, w)t2 + e1(y, w)t+ e0(y, w)

where 0 < y < cos θ0, 0 < w < 1 and 0 < t < 1/44 and

e2(y, w) = (−64

5
y6 +

128

5
y4 − 64

5
y2 +

32

5
)w

+ 64y6 − 176y4 + 56y2

e1(y, w) = (
48

25
y4 − 64

25
y2 +

24

25
)w2

+ (−32

5
y6 − 32

5
y4 +

32

5
y2)w

− 16y8 + 96y6 − 48y4

e0(y, w) = (− 16

125
y2 +

8

125
)w3 + (

64

25
y4 − 16

25
y2)w2

+ (−64

5
y6 − 32

5
y4)w + 64y6

We note that using Lemma 3.3 it can be verified that q∗0(0) = e0(y, w) is
non-negative and that q∗0(1/4) is also non-negative.

Let R be the parameter region for y, w, i.e, R = {(y, w) : 0 < y <
√

2/2, 0 <
w < 1} We will partition R into subregions bounded by curves lj, j = 1, 2, 3.
See Figure 3.

The first curve l1 is defined as the solution set {(y, w) : e2(y, w) = 0} and,
since e2(y, w) is linear in w, is given by

l1 = {(y, w) ∈ R : w =
5y2(8y4 − 22y2 + 7)

4(2y6 − 4y4 + 2y2 − 1)
}

Let A be the subset of R to the “right” of l1, i.e., the subset of R where e2(y, w) <
0. On A, because q∗0(t) is concave down, it suffices to check that q∗0(0) > 0 and
q∗0(1/4) > 0 to verify that q∗0(t) > 0.
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Figure 3. The parameter space R.

The second curve l2 is defined as the solution set {(y, w) : e1(y, w) = 0} and,
since e1(y, w) is quadratic in w, is given by

l2 = {(y, w) ∈ R : w = y2 20y4 + 20y2 − 20 + 10
√

16y8 − 80y6 + 134y4 − 92y2 + 22

2(6y4 − 8y2 + 3)
}

LetB be the subset ofR to the “left” of l2, i.e., the subset ofR where e1(y, w) > 0.
On B, because q∗0(t) is concave up and because the slope to q∗0(t) at 0 is positive,
it suffices to check that q∗0(0) > 0 to verify that q∗0(t) > 0.

The third curve l3 is defined as the solution set {(y, w) : e2(y, w)/2+e1(y, w) =
0}, i.e., the set where the vertex of q∗0(t) is located at t = 1/4. Since e2(y, w)/2+
e1(y, w) is quadratic in w, l3 is given by

l3 = {(y, w) ∈ R : w = y2 80y6 − 40y4 − 20 + 10
√
k(y)

2(12y4 − 16y2 + 6)
}

where k(y) = 112y12 − 512y10 + 960y8 − 852y6 + 332y4 − 42y2 + 4. Let C be
the subset of R bounded between l3 and l1, i.e., the set where q∗0(t) is concave
up and the vertex of q∗0(t) is located to the right of t = 1/4. On C it suffices to
check that q∗0(1/4) > 0 to verify that q∗0(t) > 0.

Finally, let D be the subset of R bounded between l2 and l3. On D, the
quadratic q∗0(t) is concave up and the vertex lies between t = 0 and t = 1/4. To
verify that q∗0(t) > 0, we need to verify that q∗0(t)|t=vertex > 0 on D or alternatively
that the discriminant of q∗0(t) is negative on D.

Ideally, to solve this latter problem one would represent y ∈ D in terms
of a convex average of values on l2 and l3. However, the curves l2, l3 which
bound D are inconvenient to work with. Instead, we will bound l2 and l3 by
(approximating) polynomial curves, m2 and m3, which lie outside of D and show
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Figure 4. The bounding curves m2 and m3.

that the discriminant of q∗0(t) is negative on the region D∗ which is bounded by
our approximating curves m2 and m3 and which contains D.

Let m2 = {(y, w) ∈ R : w = 81
16
y2} and m3 = {(y, w) ∈ R : w = 9y − 5}. Let

D∗ be the subset of R bounded between m2 and m3. See Figure 4. To show that
m2 lies to the left of l2, one isolates the square root in the inequality m2− l2 > 0,
squares the terms in the resulting inequality and then collects all of the terms to
obtain a new inequality of the form

p(y) = 3876y8 − 14816y6 + 58020y4 − 62448y2 + 21609 > 0

A Sturm sequence argument then verifies p(y) > 0 on the interval 0 < y <
√

2/2.
A similar argument show that m3 lies to the right of l3. Consequently, D∗ ⊃ D.

Let y2(w) = 4
9

√
w be the inverse function for m2 and y3(w) = 1

9
w + 5

9
be the

inverse function for m3 and let w = v2. Define now

f(z, v, t) = q∗0(y2(v
2) + z(y3(v

2)− y2(v
2)), v2, t)

= f2(z, v)t2 + f1(z, v)t+ f0(z, v)

We have then that f is a polynomial in z, v, t with rational coefficients. As
a quadratic in t, it sufficies to show that the discriminant f(t) is negative for
0 < z < 1, 0 < v < 1. Let

g(z, v) = 4f2(z, v)f0(z, v)− (f1(z, v))2

There is a complication that at (z, v) = (0, 0) the function g has a higher order
zero. We will partition the parameter square [0,1]x[0,1] into triangles

Tl = {(z, v) : z = mv, 0 < v < 1, 0 < m < 1}
Tu = {(z, v) : v = mz, 0 < v < 1, 0 < m < 1}
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and then set

gl(m, v) = g(mv, v), 0 < v < 1, 0 < m < 1

gu(z,m) = g(z,mz), 0 < z < 1, 0 < m < 1

The polynomial gl can be factored as

gl(m, v) = v8hl(m, v)

where hl is a polynomial in m, v with rational coefficients. The polynomial hl
is of degree 16 in m and degree 40 in v and satisfies hl(0, 0) > 0.

We apply now Lemma 3.3 to hl. Explicitly, for the region R = {(m, v) : 0 <
m < 1, 0 < v < 1}, let L = L(12000, 12000). Writing

hl(v,m) =
16∑
i=0

ui(v)mi

we have

∂hl
∂v

(v,m) =
16∑
i=0

ui
′(v)mi,

∂hl
∂m

(v,m) =
16∑
i=1

iui(v)mi−1.

Hence, ∣∣∣∣∂hl∂v
(m, v)

∣∣∣∣ ≤M1 = 698,

∣∣∣∣∂hl∂m
(m, v)

∣∣∣∣ ≤M2 = 872

where

M1 ≥
16∑
i=0

µi, µi = max
0≤v≤1

|ui′(v)|

M2 ≥
16∑
i=1

νi, νi = max
0≤v≤1

|iui(v)|.

Set M = max{M1,M2} = 872. A lengthy finite-arithmetic calculation of the
values of polynomial hl over the lattice L yields

m = min
(m,v)∈L

hl(m, v) =
2158649303

26904200625
≈ 0.080.

By Lemma 3.3, we have hl(m, v) ≥ 0 on R.

A similar argument show that gu(z,m) is non-negative on 0 < z < 1, 0 <
m < 1.

Case 2. φ = π, 0 < θ < π/2, 0 < r < 1

Let

g(r) = (1− r)2Sfα(−r) = (1− r)22(c+ α2)
1 + 2dr + r2

(1 + 2cr + r2)2

where 0 < r < 1. For fixed α we have

g′(r) = 4(1− r2)(c+ α2)
(d− 2c− 1)r2 − 2(dc+ 2d− c)r + d− 2c− 1

(1 + 2cr + r2)3
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The sign of g′ is determined by the sign of

(d− 2c− 1)(r2 − 2
dc+ 2d− c
d− 2c− 1

r + 1).

Since d is increasing as a function of θ and 2c + 1 is decreasing as a function
of θ, then the factor d− 2c− 1 has a unique root θ1 such that d− 2c− 1 < 0 for
0 < θ < θ1 (and d−2c−1 > 0 for θ1 < θ < π/2). Numerically, θ1 ≈ 0.598. Using
a lower estimate for α from Lemma 3.2, it can be shown that cos θ1 < 83/100.
Note, θ1 > θ0.

It is easily verified that dc+ 2d− c = c(d− 1) + 2d > 0 for 0 < θ < θ1. Hence,
the coefficient −2dc+2d−c

d−2c−1
> 0 for 0 < θ < θ1 which implies that g′ is negative for

0 < θ < θ1. Hence, g takes its maximum at 0 for 0 < θ < θ1, but the value g(0)
is 2(c+ α2), which is covered in Case 3.

We will show that for θ1 < θ < π/2 that 2 > g(r). Since we show in Case 3
that the maximal value for the Schwarz norm of fα is more than 2, then we will
have that no value of g(r) for θ1 < θ < π/2 can be extremal for our problem of
maximizing the Schwarz norm of fα.

Let

2− g(r) =
p1(θ, r)

q1(θ, r)
.

It is easily seen that the numerator p1 is a reflexive 4th-degree polynomial in r.
Making a change of variable r = e−s, we can write

e2sp1(θ, r) = p2(θ, cosh s)

where p2 is a 2nd-degree polynomial in cosh s. We substitute cosh s = 1 +
2 sinh2(s/2) into p2 to obtain

p3(θ, sinh(s/2)) = p2(θ, 1 + 2 sinh2(s/2))

which is an even 4th-degree polynomial in sinh(s/2). Finally, we make a change
of variable

√
t = sinh(s/2) to obtain

p4(θ, t) = p3(θ, sinh(s/2))

which is a 2nd-degree polynomial in t.

We have reduced our problem to showing that

p4(t) = p4(θ, t) = c2(θ)t
2 + c1(θ)t+ c0(θ) > 0

for t > 0 under the assumption that θ1 < θ < π/2 where

c2 = 8[1− (c+ α2)]

c1 = 4(2− α2 + c− dc− α2d)

c0 = 2(1 + c)2.

Let v denote the vertex of p4. Then

p4|t=v =
c+ α2

2[1− (c+ α2)]
q1
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where

q1 =
(1 + c)2

4(c+ α2)
q2

with
q2 = −4α4 + (4c− 12)α2 − c2 − 18c+ 15.

Making a change of variable c = 2y2 − 1 (where y = cos θ), we have

q2 = −4α4 + (8y2 − 16)α2 − 4y4 − 32y2 + 32.

Note that all of the coefficients of α in q2 are negative. Since we are looking
for a lower bound for q2, we replace α = α(y) by an upper bound obtained from
Lemma 3.2. Specifically, we bound α by the 8th-order partial sum

α ≤ p8 = 1− 1

4
y2 − 1

16
y4 − 7

192
y6 − 19

768
y8.

We have then,
q2 ≥ q∗2 = q2|α=p8 ,

The polynomial q∗2 is a 32nd-degree polynomial in y with rational coefficients.
A Sturm sequence argument shows that q∗2 has no roots on (0,83/100]. Hence,
q2 > 0.
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Revista Colombiana de Matemáticas 35 (2001), no. 2, 51–60.
[11] , Hyperbolically convex functions, dimension and capacity, Complex Variables

Theory Appl. 47 (2002), no. 9, 803–814. MR 2003f:30017
[12] , On the derivative of hyperbolically convex functions, Ann. Acad. Sci. Fenn.

Math. 27 (2002), no. 1, 47–56.
[13] Diego Mej́ıa, Christian Pommerenke, and Alexander Vasil′ev, Distortion theorems for

hyperbolically convex functions, Complex Variables Theory Appl. 44 (2001), no. 2,
117–130. MR 2003e:30025



22 Roger W. Barnard and Kent Pearce ICGFT06

[14] Zeev Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc.
55 (1949), 545–551. MR 10,696e

[15] , A property of convex conformal maps, J. Analyse Math. 30 (1976), 390–393.
MR 55 #12901

[16] A. Yu. Solynin, Some extremal problems on the hyperbolic polygons, Complex Variables
Theory Appl. 36 (1998), no. 3, 207–231. MR 99j:30030

[17] , Moduli and extremal metric problems, Algebra i Analiz 11 (1999), no. 1, 3–86,
translation in St. Petersburg Math. J. 11 (2000), no. 1, 1–65. MR 2001b:30058

Roger W. Barnard and Kent Pearce E-mail: roger.w.barnard@ttu.edu
E-mail: kent.pearce@ttu.edu

Address: Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX
79409–1042


