Exam II Take Home Due: 16 April

Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Work carefully. Do your own work. <u>Show all relevant supporting steps!</u>

Each problem is worth 6 points.

- 1. Using either the Argument Principle or Rouché's Theorem, determine how many roots $e^{2z-1} = \alpha z^3$ has inside |z| = 1 for $|\alpha| > \pi$.
- 2. Using either the Argument Principle or Rouché's Theorem, determine how many of the roots of $z^4+7z-1=0$ belong to ann $(0;1\frac{1}{6},2)$.
- 3. Using either the Argument Principle or Rouché's Theorem, find the number of roots in the first quadrant of $p(z)=z^4+5z^3+6z^2+15z+8$.
- 4. Using either the Argument Principle or Rouché's Theorem, find the number of roots in the first quadrant of $p(z)=z^4+5z^3+6z^2-15z+8$.
- 5. Let *D* denote the open unit disk (centered at 0) and let *UHP* denote the upper half-plane. Let $F = \{ f \in \mathcal{A}(D) : f : D \to UHP, f(0) = 6i \}$. Find the value of $\alpha = \max_{f \in F} |f'(0)|$.
- 6. Show that there does not exist a non-constant function *u* such that *u* is harmonic on \mathbb{C} and for each $z=x+iy\in\mathbb{C}$ that $u(z)>4x^2+9y^2+1$.
- 7. Let Ω and *G* be regions in \mathbb{C} . Let $f \in \mathscr{A}(\Omega)$ such that $f(\Omega) \subset G$ and let *u* be harmonic on *G*. Show that $u \circ f$ is harmonic on Ω .
- 8. Let G be a region. Let u, v be harmonic on G.
 - a. Prove that if u, v are harmonic conjugates, then the product uv is again harmonic on G.
 - b. Give an example to show that u, v are not harmonic conjugates, then the product uv need not be harmonic on G.
- 9. Consider the following two "theorems". One is true and one is false.
 - A. Let G be a region in \mathbb{C} and let F be a normal subset of $\mathscr{A}(G)$. Let $F' = \{f' : f \in F\}$. Then, F' is normal.
 - B. Let G be a region in \mathbb{C} and let F be a normal subset of $\mathscr{A}(G)$. Let $F = \{f : f' \in F\}$. Then, F is normal.

Determine which is true and prove it. Give a counter-example to show that the other is false.