MATH 5321

Exam II

Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Work carefully. Do your own work. <u>Show all relevant supporting steps!</u>

- 1. (30 pts) State and prove Rouché's Theorem.
- 2. (30 pts) Give the definition for each of the following:
 - a. Let $f, g \in A(D)$. Then, f is subordinate to g $(f \prec g)$ if ...
 - b. For $\{K_n\}$ a compact exhaustion of a region *G* and for $f, g \in C(G, \Omega)$ let $\rho(f, g) = \dots$
 - c. Let G be a region. A function f is meromorphic on G if ...
 - d. A set $F \subset C(G, \Omega)$ is normal ...
 - e. Let G be a region and let $f: G \to \mathbb{R}$. f satisfies the Mean Value Property (MVP) on G if ...
 - f. A set $F \subset C(G, \Omega)$ is equicontinuous at a point $z_0 \in G$ if ...
- 3. (20 pts) Find the number of zeros of $p(z) = \frac{11}{10} z^6 \frac{26}{5} z^5 + 3z^2 1$ in $|z| \le 1$.
- 4. (20 pts) Let G be a bounded region in \mathbb{C} . Let $\{f_n\} \subset C(\overline{G}, \mathbb{C}) \cap A$ (G) and let $f \in C(\overline{G}, \mathbb{C}) \cap A$ (G). Suppose that $f_n \to f$ uniformly on ∂G . Show that $f_n \to f$ in $C(G, \mathbb{C})$.