Review Exam III Complex Analysis

Underlined Propositions or Theorems: Proofs May Be Asked for on Exam

Chapter 3.3

Bi-Linear, Linear Fractional, Moebius Transformations

Definition
$$S(z) = \frac{az+b}{cz+d}$$
, $ad-bc \neq 0$
Differentiability $S'(z) = \frac{ad-bc}{(cz+d)^2}$
Properties $S: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$, S is 1-1, S is onto, pole of S is $-d/c$, zero of S is $-b/a$
 $T(z) = S^{-1}(z) = \frac{-dz+b}{cz-a} = \frac{dz-b}{-ca+a}$, S conformal on $\mathbb{C} \setminus \{-d/c\}$, Fixed Points,

Uniqueness

Special Cases: Translations, Dilations, Rotations, Inversion Every Bi-Linear Transformation can be written as a composition of Translations, Dilations, Rotations, and the Inversion

Mapping Properties of Special Cases: "Circles" to "Circles" Geometry of Images

Cross-Ratio

Definition: $S(z) = (z, z_2, z_3, z_4)$ unique Bi-Linear Transformation such that $S(z_2) = 1$, $S(z_3) = 0$, $S(z_4) = \infty$

Proposition: Cross-Ratio in Invariant under Bi-Linear Transformations

Properties Orientation Principle, Symmetry

Joukowski Transformation

Conformal Mappings

Compositions of Standard Functions, Bi-Linear Transformations and Joukowski

<u>Examples</u> of conformal mappings <u>Problems</u> about constructing conformal mappings

Chapter 4.1

Riemann-Stieltjes Integrals

Definition of function of bounded variation and total variation

Proposition (1.3) If $g:[a,b] \to \mathbb{C}$ is piecewise smooth, then g is of bounded variation and

$$V(\boldsymbol{g}) = \int_{a}^{b} |\boldsymbol{g}'(t)| dt.$$

Definition of Riemann-Stieltjes Integral

Theorem (1.4) If $f:[a,b] \to \mathbb{C}$ is continuous and if $\mathbf{g}:[a,b] \to \mathbb{C}$ is of bounded variation, then the Riemann-Stieltjes integral $\int_{a}^{b} f \, d\mathbf{g} = \int_{a}^{b} f(t) d\mathbf{g}(t)$ exists. (Proof uses Cantor's Theorem II.3.7).

<u>Proposition 1.7</u> Let $f, g: [a,b] \to \mathbb{C}$ be continuous, let $g, s: [a,b] \to \mathbb{C}$ be of bounded variation and let $a, b \in \mathbb{C}$. Then,

a)
$$\int_{a}^{b} (\boldsymbol{a} f + \boldsymbol{b} g) d\boldsymbol{g} = \boldsymbol{a} \int_{a}^{b} f d\boldsymbol{g} + \boldsymbol{b} \int_{a}^{b} g d\boldsymbol{g}$$

b)
$$\int_{a}^{b} f d(a\boldsymbol{g} + \boldsymbol{b}\boldsymbol{s}) = \boldsymbol{a} \int_{a}^{b} f d\boldsymbol{g} + \boldsymbol{b} \int_{a}^{b} g d\boldsymbol{s}$$

Proposition Let $f : [a,b] \to \mathbb{C}$ be continuous and let $g : [a,b] \to \mathbb{C}$ be of bounded variation. If

$$a < t_0 < t_1 < \dots < t_n = b$$
, then $\int_a^b f dg = \sum_{k=1}^n \int_{t_{k-1}}^{t_k} f dg$

<u>Theorem (1.9)</u> If $g:[a,b] \to \mathbb{C}$ is piecewise smooth and $f:[a,b] \to \mathbb{C}$, then $\int_{a}^{b} f \, dg = \int_{a}^{b} f(t)g'(t)dt$.

Definition for a path $g:[a,b] \to \mathbb{C}$ of trace of $g, \{g\}$.

Definition of rectifiable path $g:[a,b] \to \mathbb{C}$ and length of $\{g\} = \int_{a}^{b} dg$. For g piece-wise smooth, length of

$$\{\boldsymbol{g}\} = \int_{a}^{b} |\boldsymbol{g}'(t)| dt .$$

Definition of line integral: Let $\boldsymbol{g} : [a,b] \to \mathbb{C}$ be rectifiable path and let $f : \{\boldsymbol{g}\} \to \mathbb{C}$ be continuous, define line integral $\int_{\boldsymbol{g}} f = \int_{a}^{b} (f \circ \boldsymbol{g}) d\boldsymbol{g} = \int_{a}^{b} f(\boldsymbol{g}(t)) d\boldsymbol{g}(t) = \int_{\boldsymbol{g}} f(z) dz$

Note: if **g** piece-wise smooth, then $\int_{g} f = \int_{a}^{b} (f \circ g) dg = \int_{a}^{b} f(g(t)) dg(t) = \int_{a}^{b} f(g(t))g'(t) dt = \int_{g} f(z) dz$

Problems about computing line integrals using the definition

Definition of a change of parameter j

Proposition If j is a change of parameter, i.e., if $j : [c,d] \to [a,b]$, j is continuous, strictly increasing and j is onto, then for $g : [a,b] \to \mathbb{C}$ a rectifiable path and $f : \{g\} \to \mathbb{C}$ continuous, then $\int_{g} f = \int_{g \in J} f$

Definition: (1) a curve as an equivalance class of rectifiable paths;

(2) the trace of a curve is the trace of a representative;

(3) a curve is smooth if some representative is smooth;

(4) a curve is closed if the initial and terminal points on the trace are the same.

Definition for $g:[a,b] \to \mathbb{C}$ a rectifiable path of -g and of |g(t)| and definition

$$\int_{\boldsymbol{g}} f(z) \, |\, dz \, | = \int_{a}^{b} f(\boldsymbol{g}(t)) d \, |\, \boldsymbol{g} \,|\, (t)$$

<u>Proposition (1.17)</u> Let $g:[a,b] \to \mathbb{C}$ be a rectifiable path and let $f:\{g\} \to \mathbb{C}$ be continuous. Then,

a)
$$\int_{-g} f = -\int_{g} f$$

b)
$$|\int_{g} f| \leq \int_{g} |f| |dz| \leq \max_{z \in \{g\}} |f(z)| V(g)$$

Theorem (Fundamental of Theorem of Calculus for Line Integrals) Let *G* be a region and let **g** be a rectifiable path in *G* with initial and terminal points **a** and **b**, resp. If $f: G \to \mathbb{C}$ is continuous and if *f* has a primitive on *G*, say *F*, then $\int_{g} f = F(z) \Big|_{a}^{b}$.

Corollary Let *G* be a region and let **g** be a closed rectifiable path in *G*. If $f: G \to \mathbb{C}$ is continuous and if *f* has a primitive on *G*, say *F*, then $\int_{g} f = 0$.

Problems about computing line integrals using the Fund. Thm. of Calc. for Line Integrals

Chapter 4.2

Proposition 2.1 (Leibnitz's Rule)

Integrals

a)
$$\int_{|w|=1}^{\infty} (w-z)^n dw = 0, \ n = 0, 1, 2, 3, \cdots$$

b)
$$\int_{|w|=1} \frac{dw}{(w-z)^n} = 0, \begin{cases} n = 2, 3, 4, 5, \cdots \\ |z| \neq 1 \end{cases}$$

c)
$$\int_{|w|=1} \frac{dw}{w-z} = \begin{cases} 0, |z| > 1\\ 2\mathbf{p}i, |z| < 1 \end{cases}$$

<u>Cauchy Integral Formula #0</u> Let $f: G \to \mathbb{C}$ be analytic and suppose that $\overline{B(a,r)} \subset G$. For $z \in B(a,r)$,

$$f(z) = \frac{1}{2\mathbf{p}i} \int_{|w-d|=r} \frac{f(w)}{w-z} dw$$

Problems about computing line integrals using the CIF #0

<u>Lemma (2.7)</u> Let \boldsymbol{g} be a rectifiable curve. Suppose that F_n and F are continuous on $\{\boldsymbol{g}\}$ and that $\{F_n\}$ converges uniformly on $\{\boldsymbol{g}\}$ to F. Then, $\lim_{n\to\infty} \int_{\boldsymbol{g}} F_n = \int_{\boldsymbol{g}} \lim_{n\to\infty} F_n = \int_{\boldsymbol{g}} F$

<u>Theorem 2.8</u> Let G be a region and let $f: G \to \mathbb{C}$ be analytic. Let $B(a, R) \subset G$. Then, f has a power series representation on B(a, R), say

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$$
 (1)

where the coefficients $a_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\mathbf{p}i} \int_{|w-a|=\mathbf{r}} \frac{f(w)}{(w-a)^{n+1}} dw$, for any choice $0 < \mathbf{r} < R$.

Furthermore, the radius of convergence of the power series (1) is at least R.

Corollaries (Hypothesis: Let G be a region and let $f: G \to \mathbb{C}$ be analytic. Let $B(a, R) \subset G$.)

a) the radius of convergence of the power series (1) is equal to $dist(a, \partial G)$, i.e., the distance (from *a*) to the nearest singularity of *f*

b)
$$f^{(n)}(a) = \frac{n!}{2\mathbf{p}i} \int_{|w-a|=\mathbf{r}} \frac{f(w)}{(w-a)^{n+1}} dw$$

c) Cauchy's Estimate If
$$|f(z)| \le M$$
 on $B(a, R)$, then $|f^{(n)}(a)| \le \frac{n!M}{R^n}$.

d)
$$f$$
 has a primitive on $B(a, R)$, namely $F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^{n+1}$

e) Proposition 2.15 Suppose g is a closed rectifiable curve in B(a, R). Then, $\int_{g} f = 0$

Chapter 4.3

Division Algorithm

Definition: Let G be a region and let $f: G \to \mathbb{C}$ be analytic and let f(a) = 0. We say that f has a zero of order m (multiplicity m) at z = a if

a) there exists $g \in A$ (G) such that (i) $f(z) = (z - a)^m g(z)$ and (ii) $g(a) \neq 0$

or alternatively

b) (i)
$$f(a) = f'(a) = f''(a) = \dots = f^{(m-1)}(a) = 0$$
 and $f^{(m)}(a) \neq 0$

Definition: entire function

<u>Liouville's Theorem</u> If f is a bounded entire function, then f is constant.

Fundamental Theorem of Algebra Every non-constant polynomial with complex coefficients has a root in C

Corollary: Every polynomial with complex coefficients of degree n has exactly n roots (counted according to multiplicity)

<u>Identity Theorem</u>: Let G be a region. Let f be analytic on G. TFAE a) $f \equiv 0$

b) there exists a point $a \in G$ such that $f^{(n)}(a) = 0, n = 0, 1, 2, 3, \cdots$

c) $Z_f = \{z \in G : f(z) = 0\}$ has a limit point in G.

Corollaries:

- a) Let $g, h \in A$ (G) and g(z) = h(z) for $z \in S \subset G$. If S has a limit point in G, then $g \equiv h$.
- b) Let G be a region. Let f be analytic on G. Suppose that f is not identically 0 on G. If $a \in G$ and f(a) = 0, then there exists an integer m such that f has a zero at z = a of multiplicity m.
- c) Isolated Zeros. Let *G* be a region. Let *f* be analytic on *G*. Suppose that *f* is not identically 0 on *G*. If $a \in G$ and f(a) = 0, then there exists an R > 0 such that on $B(a, R) \setminus \{a\}$ we have $f(z) \neq 0$.
- d) Let G be a region. Let f be analytic on G. Suppose that f is not identically 0 on G. Let K be a compact subset of G. Then, f has at most a finite number of zeros on K. Further, f has at most a countable number of zeros on G.

Maximum Modulus Theorem Let G be a region. Let f be analytic on G. If there exists a point $a \in G$ such that $|f(a)| \ge |f(z)|$ for all $z \in G$, then f is constant on G.

Extension Let *G* be a region. Let *f* be analytic on *G*. If there exists a point $a \in G$ and r > 0 such that $|f(a)| \ge |f(z)|$ for all $z \in B(a,r)$, then *f* is constant on *G*.

Chapter 4.4

Proposition: Let \boldsymbol{g} be a closed rectifiable curve and let $a \notin \{\boldsymbol{g}\}$. Then, $\frac{1}{2\boldsymbol{p}i} \int_{\boldsymbol{g}} \frac{dz}{z-a}$ is an integer.

Definition: Winding of \boldsymbol{g} wrt to a (Index of \boldsymbol{g} wrt to a) $n(\boldsymbol{g}, a) = \frac{1}{2\boldsymbol{p}i} \int_{\boldsymbol{g}} \frac{dz}{z-a}$, for \boldsymbol{g} a closed rectifiable

curve and $a \notin \{g\}$.

Interpretation: $2\mathbf{p} \ n(\mathbf{g}, a)$ represents the total change in $\arg(\mathbf{g}(t) - a)$ as $\mathbf{g}(t)$ parametrizes the curve $\{\mathbf{g}\}$, i.e., $n(\mathbf{g}, a)$ represents the total number of times \mathbf{g} winds around a.

Theorem Let g be a closed rectifiable curve. Then, n(g,a) is constant on components of $\mathbb{C} \setminus \{g\}$. Also, n(g,a) = 0 on the unbounded component of $\mathbb{C} \setminus \{g\}$