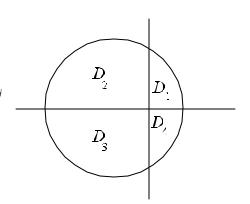
TakeHome - Due Nov 8

Answer the problems on separate paper. You do not need to rewrite the problem statements on your answer sheets. Work carefully. Do your own work. Show all relevant supporting steps!

- 1. (15) Discuss the convergence of five of the following series, i.e., determine where the series converge, where the series converge absolutely and where the series converge uniformly.
 - a. $\sum_{n=0}^{\infty} \left(\frac{z}{z+1} \right)^n$ b. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{z+n}$ c. $\sum_{n=1}^{\infty} \frac{z^n}{1-z^n}$
- d. $\sum_{i=0}^{\infty} \frac{1}{z^2 + n^2}$ e. $\sum_{n=1}^{\infty} n^{-z}$ f. $\sum_{n=0}^{\infty} e^{-nz^2}$
- 2. (9) Suppose that the radius of convergence of $\sum_{n=0}^{\infty} a_n z^n$ is r, where $0 < r < \infty$. Find the radius of convergence of each of the following series:
 - a. $\sum_{n=0}^{\infty} a_n z^{2n}$
- b. $\sum_{n=0}^{\infty} a_{2n} z^n$ c. $\sum_{n=0}^{\infty} a_n^2 z^n$
- 3. (4) Let $G_1 = \{z : 0 < \text{Re } z < \boldsymbol{p}, \text{Im } z > 0\}$. Let $f(z) = \cos z$. Find the conformal image of G_1 under f. Explicitly show that the images of the curves $m_x = \{z = x + iy : y > 0\}$ and $n_y = \{z = x + iy : 0 < x < \mathbf{p}\}$ under f intersect orthogonally in $f(G_1)$.
- 4. (4) Let $G_2 = \{z : |z-\frac{1}{2}| < \frac{1}{2}\}$ and $G_3 = \{z : |\operatorname{Im} z| < 1\}$. Find a one-to-one conformal mapping fwhich maps G_2 onto G_3 . Hint: Find a one-to-one conformal mapping f_1 which maps G_2 onto RHP (the open right half-plane). Then, find one-to-one conformal mapping f_2 which maps *RHP* onto G_3 .

5. (10) The lines, $x = \frac{1}{2}$ and y = 0 divide the interior of the unit circle into 4 subregions D_1 , D_2 , D_3 and D_4 . See figure to the right. Let $w = \frac{z}{z+1}$. Find the images E_j of each subregion D_j under w, i.e., find

 $E_i = w(D_i), j = 1,2,3,4.$



- 6. (4) Let $G_4 = \{z = re^{iq} : 0 < r < 1, 0 < q < p/2\}$ and let $G_5 = \{z = re^{iq} : 0 < r < \infty, 0 < q < p/2\}$, i.e., G_5 is the first quadrant (the interior thereof) and G_4 is the intersection of the first quadrant with the unit disk centered at the origin (the interior thereof). Find a one-to-one conformal mapping f which maps G_4 onto G_5 .
- 7. (4) Let $u(x,y) = x^3 3xy^2 + 2e^y \cos x + 1$. Show that u is harmonic on *RHP* (the open right halfplane) and find a harmonic conjugate v such that f = u + iv is analytic on *RHP*.