Review Summary

Chapters 9.1 - 11.6

Chapter 9

- A. Convergence of Functions
 - 1. Sequence of Functions $\{f_n\}$
 - a. Pointwise Convergence on [a,b]
 - b. Uniform Convergence on [a,b]
 - 2. Series of Functions $\sum u_n$
 - a. Pointwise Convergence on [a,b]
 - b. Uniform Convergence on [a,b]
 - Examples of Sequences (Series) which Converge Pointwise but Not Uniformly
 - 4. Examples of Sequences (Series) which Converge Uniformly
- B. Dini's Theorem

3.

- C. Weierstrass M-Test for Uniform Convergence
- D. Consequences of Uniform Convergence

Sequence of Functions $\{f_n\}$			Series of Functions $\sum u_n$			Power Series $\sum a_n x^n$		
f_n cont. on [a,b] $f_n \rightarrow f$ unif. on [a,b]	}	f cont. on [a,b]	$u_n \text{ cont. on}$ [a,b] $\sum u_n \rightarrow f$ unif. on [a,b]	}	f cont. on [a,b]	$\sum_{\substack{n \\ n \\ n}} a_n x^n$ converges at $x_0, x_0 \neq 0$	}	$\sum_{\substack{n \in \mathbf{X}^n \\ \text{cont. on} \\ [-\mathbf{x}_1, \mathbf{x}_1] \text{ for} \\ 0 < \mathbf{x}_1 < \mathbf{x}_0 }$
$f_{n} \in \mathcal{R}[a,b]$ $f_{n} \rightarrow f$ unif. on [a,b]	}	$f \in \Re[a,b]$	$u_n \in \Re[a,b]$ $\sum_{n \to f} u_n \to f$ unif. on [a,b]	}	$f \in \mathfrak{R}[a,b]$	$\sum_{n=1}^{\infty} a_n x^n$ converges at $x_0, x_0 \neq 0$	}	$\sum_{\substack{n \in \mathbb{R}^n \\ \Re[-\mathbf{x}_1, \mathbf{x}_1] \text{ for } \\ 0 < \mathbf{x}_1 < \mathbf{x}_0 }} a_n \mathbf{x}^n \in \mathbb{R}^n$
$f_{n} \in \mathcal{R}[a,b]$ $f_{n} \rightarrow f$ unif. on [a,b]	}	$\lim_{n \to \infty} \int f_n = 0$ $\int \lim_{n \to \infty} f_n$	$u_{n} \in \Re[a,b]$ $\sum_{n \to 0} u_{n} \to f$ unif. on [a,b]	}	$\int \sum_{n=1}^{\infty} u_n$ $\sum_{n=1}^{\infty} \int u_n$	$\sum_{\substack{n \in \mathbb{N}^n \\ \text{converges} \\ \text{at } x_0, x_0 \neq 0}} a_n x^n$	}	$\int_0^{x_1} \sum a_n x^n dx$ $=$ $\sum \frac{a_n}{n+1} x_1^{n+1}$

Sequence of Functions $\{f_n\}$		Series of Functions $\sum u_n$		Power Series $\sum a_n x^n$	
$f_{n} \text{ cont. on}$ $[a,b]$ $f_{n} \text{ cont. on}$ $[a,b]$ $f_{n} \rightarrow f$ on [a,b] $f_{n} ^{\prime} \rightarrow g$ unif. on [a,b]	$f' \text{ exists} \\ \text{on } [a,b] \\ \text{and} \\ f' = g$	$u_{n} \text{ cont. on}$ $[a,b]$ $u_{n} \text{ cont. on}$ $[a,b]$ $\sum_{n} u_{n} \rightarrow f$ on [a,b] $\sum_{n} u_{n} g$ unif. on $[a,b]$	$\begin{cases} f' \text{ exists} \\ \text{on } [a,b] \\ \text{and} \\ f' = g \end{cases}$	$\sum_{\substack{n \in \mathbb{N}}} a_n x^n$ converges at $x_0, x_0 \neq 0$	$\frac{d}{dx} \sum_{n=1}^{\infty} a_n x^n$ exists on $[-x_1, x_1]$ for $0 < x_1 < x_0 $ and $\frac{d}{dx} \sum_{n=1}^{\infty} a_n x^n$ $\sum_{n=1}^{\infty} n a_n x^{n-1}$

- E. Definition of Abel Summability
 - 1. Examples of Series which are Abel Summable
 - 2. Examples of Series which are Not Abel Summable
- F. Theorems Whose Proofs You Should Know
 - 1. Theorem 9.3B
 - 2. Theorem 9.3G
- G. Representative Problems
 - 1. 9.1: 2-5
 - 2. 9.2: 1, 4-5, 8
 - 3. 9.3: 1-2, 4
 - 4. 9.4: 1-4
 - 5. 9.5: 1-3
 - 6. 9.6: 1

Chapter 10.

- A. Metric Space C[a,b]
 - 1. Definition of sup norm ||f||
 - 2. Definition of metric ρ : $\rho(f, g) = ||f g||$
 - 3. Theorem 10.1D: $\{f_n\} \rightarrow f$ in metric ρ if and only if $\{f_n\} \rightarrow f$ uniformly on [a,b]
 - 4. C[a,b] is complete.
- B. Weierstrass Approximation Theorem

C. Picard's Existence Theorem

- D. Arzela-Ascoli Theorem
 - 1. Definition of Equicontinuity
 - 2. Examples of Families \mathcal{F} which are Equicontinuous
 - 3. Examples of Families F which are Not Equicontinuous
- E. Representative Problems
 - 1. 10.1: 1
 - 2. 10.4: 1-4

Chapter 11.

- A. Length of Open Set / Closed Sets
 - 1. Definition of Length of an Open Set
 - 2. Theorem 11.1B: Length Estimate of Countable Union of Open Sets $|\bigcup G_n| \le \sum |G_n|$
 - 3. $|G_1| + |G_2| = |G_1 \cup G_2| + |G_1 \cap G_2|$
 - 4. Definition of Length of Closed Set
 - 5. Computation of Lengths of Example Open Sets and Closed Sets
- B. Measurable Sets $(E \subset [a,b])$
 - 1. Definition of Outer Measure $\overline{m}E$ and Inner Measure $\underline{m}E$
 - 2. Definition of a Measurable Set
 - 3. $\underline{m}E \leq \overline{m}E$
 - 4. E' is measurable whenever E is measurable.
 - a. mE' = (b-a) mE
 - 5. Open Sets are Measurable C = |C|
 - a. mG = |G|
 - 6. Closed Sets are Measurable
 - b. mF = |F|
 - 7. $mE_1 + mE_2 = m(E_1 \cup E_2) + m(E_1 \cap E_2)$
 - 8. $E_1 \setminus E_2$ is measurable whenever E_1 and E_2 are measurable.
 - 9. Theorem 11.3E: Countable Union of Pair-wise Disjoint Measurable Sets is Again Measurable a. $m(\bigcup E_n) = \sum m(E_n)$
 - 10. Theorem 11.3H: Countable Union of Measurable Sets is Again Measurable a. $m(\bigcup E_n) \le \sum m(E_n)$
 - b. Countable Intersection of Measurable Sets is Again Measurable

- C. Measurable Functions $(f : [a,b] \rightarrow \mathbb{R}, g : [a,b] \rightarrow \mathbb{R})$
 - 1. Definition of Measurable Function
 - 2. Theorem 11.4B: Three Equivalent Formulations to Definition of Measurable Function
 - 3. Theorem 11.4D: If f = g a.e. on [a,b] and if f is measurable, then g is measurable
 - 4. Algebra of Measurable Functions $(f+c, cf, f+g, f-g, f^2, fg, 1/g, f/g)$
 - 5. Theorem 11.4H: If a sequence $\{f_n\}$ of measurable functions converges to f on [a,b], then f is again measurable.
 - 6. Examples of Measurable Functions
 - 7. Examples of Functions which are Not Measurable
- D. Lebegue Integration
 - 1. Parallel Implementation to Riemann Integration with Partition of [a,b] into Subintervals Replaced by Partition of [a,b] into Measurable Sets.
 - 2. Definition of Measurable Partition of [a,b]
 - 3. Definition of Upper and Lower Sums for a Bounded Function on [a,b]
 - 4. Definition of Upper and Lower Lebesgue Integrals for a Bounded Function on [a,b]

5.
$$\Re \underline{\int}_{a}^{b} f \leq \Re \underline{\int}_{a}^{b} f \leq \Re \overline{\int}_{a}^{b} f \leq \Re \overline{\int}_{a}^{b} f$$

- 6. Definition of Lebesgue Integral for a Bounded Function on [a,b]
- 7. Theorem 11.5G: $\Re[a,b] \subset \&[a,b]$.

a. If
$$f \in \mathcal{R}$$
 [a,b], then $\mathcal{R} \int_{a}^{b} f = \mathcal{L} \int_{a}^{b} f$.

8. Theorem 11.5I: If f is bounded measurable function on [a,b], then $f \in \mathcal{L}$ [a,b].

Properties of Lebegsue Integration

Riemann Integration		Lebesgue Integration		
$f, g \in \mathcal{R}$ [a,b] $\Leftrightarrow f, g$ bdd, cont. a.e. on [a,b]		f, g bdd, measurable on [a,b]		
7.4A	$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$	11.6A	$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$	
7.4B	$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f$	11.6B	$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f$	
7.4C	$\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g$	11.6C	$\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g$	
		11.6D	$f = g \text{ a.e.} \implies \int_{a}^{b} f = \int_{a}^{b} g$	
7.4D	$f \ge 0$ a.e. $\Longrightarrow \int_a^b f \ge 0$	11.6E	$f \ge 0$ a.e. $\Longrightarrow \int_a^b f \ge 0$	

	Riemann Integration	Lebesgue Integration		
$f,g\in$	\Re [a,b] \Leftrightarrow f, g bdd, cont. a.e. on [a,b]	f, g bdd, measurable on [a,b]		
7.4E	$f \leq g \text{ a.e.} \implies \int_{a}^{b} f \leq \int_{a}^{b} g$	11.6F	$f \leq g \text{ a.e. } \Longrightarrow \int_{a}^{b} f \leq \int_{a}^{b} g$	
7.4F	$ \int_{a}^{b} f \leq \int_{a}^{b} f $	11.6G	$ \int_{a}^{b} f \leq \int_{a}^{b} f $	
7.4 Ex. 8	$f \in \mathcal{C}[\mathbf{a},\mathbf{b}] \text{ and } f(\mathbf{x}) \ge 0 \text{ and } \int_{a}^{b} f = 0$ $\Rightarrow f(\mathbf{x}) = 0 \text{ for all } \mathbf{x} \in [\mathbf{a},\mathbf{b}]$	11.6M	f bdd, measurable on [a,b] and $f(x) \ge 0$ and $\int_{a}^{b} f = 0$ $\Rightarrow f(x) = 0$ on [a,b] a.e.	

- E. Theorem 11.6N: If f is bounded on [a,b] and $f \in \mathcal{L}$ [a,b], then f is measurable.
- F. Theorems Whose Proofs You Should Know
 - 1. Theorem 11.2C
 - 2. Corollary 11.3B
 - 3. Corollary 11.3E
 - 4. Theorem 11.4B
 - 5. Theorem 11.5G
 - 6. Theorem 11.6B, 11.6C
 - 7. Theorem 11.6E

G. Representative Problems

- 1. 11.1: 2-5
- 2. 11.2: 2-3
- 3. 11.3: 2-4
- 4. 11.4: 1, 3
- 5. 11.5: 2-3
- 6. 11.6: 1, 3, 5