MATH 3360

Final Exam

Show your work for each problem. You do <u>not</u> need to rewrite the statements of the problems on your answer sheets. Each problem is worth 10 points.

Section I. Do any four problems.

- 1. Which elements of \mathbf{Z}_{15} are zero divisors?
- 2. Let $R = M(2, \mathbb{Z})$. Let $S = \{ \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix} : a, b \in \mathbb{Z} \}$. Determine whether *S* is a subring of *R*.
- 3. For each of the following conditions give an example which satisfies the condition if such an example exists; if no example exists, explain why.
 - a) A finite commutative ring with unity which is not an integral domain.
 - b) A finite integral domain which is not a field.
 - c) A finite field which has zero divisors.
- 4. Let *E* and *F* be fields such that $E \approx F$. Let θ be an isomorphism which maps *E* to *F*. Suppose $a \in E$ and $a \neq 0$. Prove that $\theta(a^{-1}) = \theta(a)^{-1}$.
- 5. Let *R* denote the field $\{a + b\sqrt{2} : a, b \in \mathbf{Q}\}$ and let *S* denote the field $\{a + b\sqrt{3} : a, b \in \mathbf{Q}\}$. Prove the mapping $\theta : R \to S$ defined by $\theta(a + b\sqrt{2}) = a + b\sqrt{3}$ is not a ring isomorphism.

Section II. Do any one problem.

1. Let $O = \{ f : f = \frac{a}{b} \text{ where both } a, b \text{ are positive odd integers } \}$. Define

'addition' for $f,g \in O$ by f + g = fg where fg is standard multiplication. Define 'multiplication' for $f,g \in O$ by $f \cdot g = 1$. Determine whether O with its 'addition' and 'multiplication' is a ring.

2. Let $O = \{f : f = \frac{a}{b} \text{ where both } a, b \text{ are positive odd integer}\}$. Define 'addition' for $f,g \in O$ by f + g = fg where fg is standard multiplication. Define 'multiplication' for $f,g \in O$ by $f \cdot g = f^2g^2$. Determine whether O with its 'addition' and 'multiplication' is a ring. Section III. Do any two problems.

- 1. Let *D* be an ordered integral domain. Let $a,b,c \in D$ and suppose that both ac > bc and c > 0. Prove that a > b.
- 2. Let *D* be a well-ordered integral domain. Let $a \in D$ and suppose that both $a \neq 0$ and $a \neq e$, where *e* is the unity of *D*. Prove that $a^2 > a$.
- 3. Let D be an ordered integral domain. Suppose that E is a subring of D. Prove that E is also an ordered integral domain.

Section IV. Do any five problems.

- 1. Let *R* be $M(2,\mathbb{Z})$. Let $B = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$. Consider the mappings λ,μ as mappings from the additive group *R* to the additive group *R* where λ is given by $\lambda(A) = BA$ for $A \in R$ and μ is given by $\mu(A) = AB$ for $A \in R$. Find ker(λ) and ker(μ).
- 2. Let *G*,*H* be groups and let θ be a group homomorphism, θ : *G* \rightarrow *H*. Suppose that *A* is a subgroup of *G*. Prove that $\theta(A)$ is a subgroup of *H*.
- 3. Let *G*,*H* be groups and let θ be a group homomorphism, θ : *G* \neg *H*. Let *a* \in *G*. Prove that $o(\theta(a)) \mid o(a)$.
- 4. Prove or disprove: Suppose $N \triangleleft G$. Then, $gng^{-1} = n$ for all $n \in N$ and for all $g \in G$.
- 5. Suppose $N \triangleleft G$. Prove that if [G : N] is prime, then G/N is cyclic.
- 6. Prove that if *G* is a simple Abelian group, then $G \approx \mathbb{Z}_p$ for some prime *p*.