MATH 3360

Exam I

Show your work for each problem. You do <u>not</u> need to rewrite the statements of the problems on your answer sheets.

1. Assume that a : $S \in T$ and β : $T \in U$. Consider the following statement:

```
If \beta is not onto, then \betaBa is not invertible. (1)
```

- (a) Is statement (1) true? Why or why not?
- (b) State the converse of statement (1).
- (c) Is the converse of statement (1) true? Why or why not.
- 2. Let *E* be the set of even integers. Let *m*(*n* ' ^{*m*@n}/₂.
 (a) Show that * is an operation on *E*.
 (b) Is * associative? Why or why not?
 (c) Show that * has an identity.
- 3. Is (G,*) a group? Why or why not?

(a) $G = \{ e^n * n 0 Z \}$; * is multiplication. (b) $G = Z C \{ z * 1/z 0 Z \} C \{ 0 \}$; * is addition.

- 4. Write (2 3 5)(1 2 5 3)(1 3 4) as a single cycle or a product of pairwise disjoint cycles.
- 5. Complete: If G with operation * is a group, then G is non-Abelian iff $a*b \dots b*a$...
- 6. Show that S_4 is non-Abelian.
- 7. It can be shown that \dot{u}^2 with operation + being component-wise addition, i.e., (a,b)+ (c,d) = (a+c,b+d), is a group, . Let $L = \{ (x,y) * 2x - 3y = 0 \}$, i.e., L is the set of points which lie on the line satisfying the equation 2x - 3y = 0. Show that (L,+) is a subgroup of $(\dot{u}^2,+)$.
- 8. Identify the symmetry group for the following figure, which consists of a square with one diagonal and the middle third of the other diagonal.

