15.
$$\int_{1}^{+\infty} \frac{x^2 dx}{(x^3 + 2)^2}$$

16.
$$\int_{1}^{+\infty} \frac{x^2 dx}{x^3 + 2}$$

17.
$$\int_{1}^{+\infty} \frac{x^2 \, dx}{\sqrt{x^3 + 2}}$$

18.
$$\int_0^{+\infty} xe^{-x^2} dx$$

$$19. \int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$$

$$20. \int_{-\infty}^{+\infty} x e^{-x} dx$$

$$21. \int_0^{+\infty} 5xe^{4(i-x)} dx$$

22.
$$\int_{1}^{+\infty} \frac{\ln x \, dx}{x}$$

$$23. \int_{2}^{+\infty} \frac{dx}{x \ln x}$$

24.
$$\int_{y}^{+\infty} \frac{dx}{y\sqrt{\ln y}}$$

25.
$$\int_{0}^{+\infty} x^{2} e^{-x} dx$$

26.
$$\int_{0}^{x} x^{3} e^{-x^{2}} dx$$

27.
$$\int_{-\infty}^{0} \frac{2x \, dx}{x^2 + 1}$$

28.
$$\int_{1}^{+\infty} \frac{x \, dx}{(1+x^2)^2}$$

$$29. \int_{-\infty}^{0} \frac{dx}{\sqrt{2-x}}$$

30.
$$\int_{-\infty}^{1} \frac{dx}{(5-x)^2}$$

$$31. \int_{-\infty}^{+\infty} x e^{-ixt} dx$$

$$32. \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 1}$$

33.
$$\int_0^1 \frac{dx}{x^{1/5}}$$

$$34. \int_0^4 \frac{dx}{x\sqrt{x}}$$

35.
$$\int_0^1 \frac{dx}{(1-x)^{1/2}}$$

36.
$$\int_0^2 \frac{dx}{(1-x)^2}$$

37.
$$\int_{-1}^{1} \frac{e^{x}}{\sqrt{1-e^{x}}} dx$$

$$38. \int_{-\infty}^{+\infty} \frac{3x \, dx}{(3x^2 + 2)^3}$$

$$39. \int_0^1 \ln x \, dx$$

$$40. \int_{-\infty}^{+\infty} \ln x \, dx$$

$$41. \int_{c}^{+\infty} \frac{dx}{x(\ln x)^2}$$

42.
$$\int_0^1 \frac{x \, dx}{1 - x^2}$$

43.
$$\int_{0}^{1} e^{-(1/2) \ln x} dx$$

$$44. \int_0^{-\infty} \frac{dx}{e^x + e^{-x}}$$

45.
$$\int_0^{\pi/3} \frac{\sec^2 x \, dx}{1 - \tan x}$$

测45号图2 55

| 翻轉轉轉:

46.
$$\int_0^{\pi/2} \frac{\sin x \, dx}{\sqrt{1 - 2\cos x}}$$

47. Find the area of the unbounded region between the *x*-axis and the curve

$$y = \frac{2}{(x-4)^3} \quad \text{for } x \ge 6$$

48. Find the area of the unbounded region between the *x*-axis and the curve

$$y = \frac{2}{(x-4)^3}$$
 for $x \le 2$

49. The total amount of radioactive material present in the atmosphere at time T is modeled by

$$A = \int_{0}^{T} Pe^{-rt} dt$$

where P is a constant and t is the number of years. Suppose a recent United Nations publication indicates that, at the present time, r=0.002 and P=200 millirads. Estimate the total future buildup of radioactive material in the atmosphere if these values remain constant.

50. Suppose that an oil well produces P(t) thousand barrels of crude oil per month according to the formula

$$P(t) = 100e^{-((t))/t} - 100e^{-((t)/t)}$$

where t is the number of months the well has been in production. What is the total amount of oil produced by the oil well?

51. Let
$$f(x) = \begin{cases} \frac{1}{x^2} & \text{for } x \ge 1\\ 1 & \text{for } -1 < x < 1\\ e^{-rt} & \text{for } x \le -1 \end{cases}$$

Sketch the graph of f and evaluate

$$\int_{-\infty}^{+\infty} f(x) \, dx$$

52. Find all values of p for which $\int_{2}^{+\infty} \frac{dx}{x(\ln x)^{p}}$ converges, and find the value of the integral when it exists.

53. Find all values of p for which $\int_0^1 \frac{dx}{x^p}$ converges, and find the value of the integral when it exists.

54. Find all values of p for which $\int_0^{1/2} \frac{dx}{x(\ln x)^p}$ converges, and find the value of the integral when it exists.

55. Counterexample Problem Discuss the calculation

$$\int_{-1}^{1} \frac{dx}{x^2} = \frac{-1}{x} \Big|_{-1}^{1} = -[1 - (-1)] = -2$$

Is the calculation correct? Explain.

56. Journal Problem College Mathematics Journal ■ Peter Lindstrom of North Lake College in Irving, Texas, had a student who handled an ∞/∞ form as follows:

$$\int_{1}^{+\infty} (x-1)e^{-x} dx = \int_{1}^{+\infty} \frac{x-1}{e^{x}} dx$$
$$= \int_{1}^{+\infty} \frac{1}{e^{x}} dx \qquad \text{Thôpital's rate}$$
$$= \frac{1}{e}$$

What is wrong, if anything, with this student's solution?

57. Find $\int_{0}^{2} f(x) dx$, where

$$f(x) = \begin{cases} \frac{1}{\sqrt[4]{x^3}} & \text{for } 0 < x \le 1\\ \frac{1}{\sqrt[4]{(x-1)^3}} & \text{for } 1 < x < 2 \end{cases}$$

58. Evaluate the improper polar integral $\int_0^{+\infty} \theta e^{-\theta} d\theta$.

59. Find the total area between the spirals $r = e^{-2\theta}$ and $r = e^{-\theta}$ for $\theta > 0$.

thVol. 24, No. 4, September 1993, p. 343