6.1  Area Between Two Curves 361

In Example 5, the area can also be found by using vertical strips, but the procedure
is more complicated. Note in Figure 6.10 that on the interval [—5, 3], a representative
vertical strip would extend from the bottom half of the parabola y> — 4y + x = 0 to the
line y = 'i(x + 3), whereas on the interval [3,4], a typical vertical strip would extend
from the bottom half of the parabola y° — 4y + x = 0 to the top half. Thus, the area is
given by the sum of two integrals. the second of which requires solving the equation
y* —4y +x =0 for y using the quadratic formula. With some effort, it can be shown
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