27.
$$f(x) = x^2 - 3x - 5$$
, where $x = -2$

28.
$$f(x) = x^5 - 3x^3 - 5x + 2$$
, where $x = 1$

29.
$$f(x) = (x^2 + 1)(1 - x^3)$$
, where $x = 1$

30.
$$f(x) = \frac{x+1}{x-1}$$
, where $x = 0$

31.
$$f(x) = \frac{x^2 + 5}{x + 5}$$
, where $x = 1$

32.
$$f(x) = 1 - \frac{1}{x} + \frac{2}{\sqrt{x}}$$
, where $x = 4$

Find the coordinates of each point on the graph of the given function where the tangent line is horizontal in Problems 33-39.

33.
$$f(x) = 2x^3 - 7x^2 + 8x - 3$$

34.
$$f(t) = t^4 + 4t^3 - 8t^2 + 3$$

35.
$$g(x) = (3x - 5)(x - 8)$$

36.
$$f(t) = \frac{1}{t^2} - \frac{1}{t^3}$$

37.
$$f(x) = \sqrt{x}(x-3)$$

38.
$$h(u) = \frac{1}{\sqrt{u}}(u+9)$$

39.
$$h(x) = \frac{4x^2 + 12x + 9}{2x + 3}$$

B 40. a. Differentiate the function
$$f(x) = 2x^2 - 5x - 3$$
.

41. a. Use the quotient rule to differentiate
$$f(x) = \frac{2x-3}{x^3}$$
.

b. Rewrite the function in part **a** as
$$f(x) = x^{-3}(2x - 3)$$
 and differentiate by using the product rule.

c. Rewrite the function in part **a** as
$$f(x) = 2x^{-2} - 3x^{-3}$$
 and differentiate.

42. Find numbers
$$a$$
, b , and c that guarantee that the graph of the function $f(x) = ax^2 + bx + c$ will have x-intercepts at $(0,0)$ and $(5,0)$ and a tangent line with slope 1 where $x = 2$.

43. Find the equation for the tangent line to the curve with equation
$$y = x^4 - 2x + 1$$
 that is parallel to the line $2x - y - 3 = 0$.

44. Find equations for two tangent lines to the graph of
$$f(x) = \frac{3x+5}{1+x}$$
 that are perpendicular to the line $2x - y = 1$.

45. Let
$$f(x) = (x^3 - 2x^2)(x+2)$$
.

46. Find an equation for a normal line to the graph of
$$f(x) = (x^3 - 2x^2)(x + 2)$$
 that is parallel to the line $x - 16y + 17 = 0$.

47. Find all points
$$(x, y)$$
 on the graph of $y = 4x^2$ with the property that the tangent line at (x, y) passes through the point $(2, 0)$.

48. Find the equations of all the tangent lines to the graph of the function
$$f(x) = x^2 - 4x + 25$$
 that pass through the origin.

Determine which (if any) of the functions y = f(x) given in Problems 49-52 satisfy the equation

$$y''' + y'' + y' = x + 1$$

49.
$$f(x) = x^2 + 2x - 3$$

49.
$$f(x) = x^2 + 2x - 3$$
 50. $f(x) = x^3 + x^2 + x$

51.
$$f(x) = \frac{1}{2}x^2 + 3$$

52.
$$f(x) = 2x^2 + x$$

Follow the steps of Aryabhata's approximation for π . After you have completed this demonstration, discuss the procedure and technology you used and contrast it with the tools that Āryabhata must have had available.

6 54. What is the relationship between the degree of a polynomial function P and the value of k for which $P^{(k)}(x)$ is first equal

55. Prove the constant multiple rule (cf)' = cf'.

56. Prove the sum rule
$$(f+g)'=f'+g'$$
.

57. Use the definition of the derivative to find the derivative of f^2 , given that f is a differentiable function.

58. Prove the product rule by using the result of Problem 57 and the identity

$$fg = \frac{1}{2} [(f+g)^2 - f^2 - g^2]$$

59. Prove the quotient rule

$$\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$$

where $g(x) \neq 0$. Hint: First show that the difference quotient for f/g can be expressed as

$$\frac{\frac{f}{g}(x+\Delta x) - \frac{f}{g}(x)}{\Delta x} = \frac{f(x+\Delta x)g(x) - f(x)g(x+\Delta x)}{(\Delta x)g(x+\Delta x)g(x)}$$

and then subtract and add the term g(x)f(x) in the numerator.

60. Show that the reciprocal function r(x) = 1/f(x) has the derivative $r'(x) = -f'(x)/[f(x)]^2$ at each point x where f is differentiable and $f(x) \neq 0$.

61. If f, g, and h are differentiable functions, show that the product fgh is also differentiable and

$$(fgh)' = fgh' + fg'h + f'gh$$

62. Let f be a function that is differentiable at x.

a. If $g(x) = [f(x)]^3$, show that $g'(x) = 3[f(x)]^2 f'(x)$. *Hint*: Write $g(x) = [f(x)]^2 f(x)$ and use the product rule.

b. Show that $p(x) = [f(x)]^4$ has the derivative

$$p'(x) = 4[f(x)]^3 f'(x).$$

63. Find constants A, B, and C so that $y = Ax^3 + Bx + C$ satisfies the equation

$$y''' + 2y'' - 3y' + y = x$$

a. Find an equation for the tangent line to the graph of f at the point where x = 1.

b. Find an equation for the normal line to the graph of f at the point where x = 0.