Leibniz notation

→ What This Says Because the derivative of a function is a function, differentiation can be applied over and over, as long as the derivative itself is a differentiable function. That is, we can take derivatives of derivatives.

Notice also that for derivatives of higher order than the third, the parentheses distinguish a derivative from a power. For example, $f^4 \neq f^{(4)}$.

You should note that all higher-order derivatives of a polynomial p(x) will also be polynomials, and if p has degree n, then $p^{(k)}(x) = 0$ for $k \ge n + 1$, as illustrated in the following example.

EXAMPLE 8 Higher-order derivatives for a polynomial function

Find the derivatives of all orders of

$$p(x) = -2x^4 + 9x^3 - 5x^2 + 7$$

Solution

$$p'(x) = -8x^3 + 27x^2 - 10x; \quad p''(x) = -24x^2 + 54x - 10;$$

$$p'''(x) = -48x + 54; \quad p^{(4)}(x) = -48; \quad p^{(5)}(x) = 0; \dots \quad p^{(k)}(x) = 0 \ (k \ge 5)$$

3.2 PROBLEM SET

- $oldsymbol{\Omega}$ To demonstrate the power of the theorems of this section, Problems 1-4 ask you to go back and rework some problems in Section 3.1, using the material of this section instead of the definition of derivative.
 - 1. Find the derivatives of the functions given in Problems 11–16 of Problem Set 3.1.
 - 2. Find the derivatives of the functions given in Problems 17–22 of Problem Set 3.1.
 - 3. Find the derivatives of the functions given in Problems 23-27 of Problem Set 3.1.
 - 4. Find the derivatives of the functions given in Problems 39-42 of Problem Set 3.1.

Differentiate the functions given in Problems 5-20. Assume that C is a constant.

5. a.
$$f(x) = 3x^4 - 9$$

b.
$$g(x) = 3(9)^4 - x$$

6. a.
$$f(x) = 5x^2 + x$$

b.
$$g(x) = \pi^3$$

7. **a.**
$$f(x) = x^3 + C$$

b.
$$g(x) = C^2 + x$$

8. a.
$$f(t) = 10t^{-1}$$

b.
$$g(t) = \frac{7}{4}$$

9.
$$r(t) = t^2 - \frac{1}{t^2} + \frac{5}{t^4}$$

10.
$$f(x) = \pi^3 - 3\pi^2$$

11.
$$f(x) = \frac{7}{x^2} + x^{2/3} + C$$

11.
$$f(x) = \frac{7}{x^2} + x^{2/3} + C$$
 12. $g(x) = \frac{1}{2\sqrt{x}} + \frac{x^2}{4} + C$

13.
$$f(x) = \frac{x^3 + x^2 + x - 7}{x^2}$$
 14. $g(x) = \frac{2x^5 - 3x^2 + 11}{x^3}$

14.
$$g(x) = \frac{2x^5 - 3x^2 + 11}{x^3}$$

15.
$$f(x) = (2x+1)(1-4x^3)$$
 16. $g(x) = (x+2)(2\sqrt{x}+x^2)$

16.
$$g(x) = (x+2)(2\sqrt{x}+x^2)$$

17.
$$f(x) = \frac{3x+5}{x+9}$$

18.
$$f(x) = \frac{x^2 + 3}{x^2 + 5}$$

19.
$$g(x) = x^2(x+2)^2$$

20.
$$f(x) = x^2(2x+1)^2$$

In Problems 21–24, find
$$f'$$
, f'' , f''' , and $f^{(4)}$.

21.
$$f(x) = x^5 - 5x^3 + x + 12$$

22.
$$f(x) = \frac{1}{2}x^8 - \frac{1}{2}x^6 - x^2 + 2$$

23.
$$f(x) = \frac{-2}{x^2}$$

24.
$$f(x) = \frac{4}{\sqrt{x}}$$

25. Find
$$\frac{d^2y}{dx^2}$$
, where $y = 3x^3 - 7x^2 + 2x - 3$.

26. Find
$$\frac{d^2y}{dx^2}$$
, where $y = (x^2 + 4)(1 - 3x^3)$.

In Problems 27–32, find the standard form equation for the tangent line to y = f(x) at the specified point.