Review III

- 1. Section 3.6
 - a. Explicit vs implicit equations
 - b. Implicit differentiation
 - i. Tangent line slope
 - c. Derivatives of inverse functions
 - i. Inverse trig functions
 - d. Logarithmic differentiation
 - e. Derivative of exponential functions
 - f. Representative problems: 4, 5, 21, 31, 34, 37, 40, 43, 51, 55

2. Section 3.7

- a. General procedure for related rates problems
- b. Representative problems: 14, 17, 22, 24, 26, 27, 32, 34, 42
- 3. Section 3.8
 - a. Tangent line approximation to y = f(x)
 - b. Linearization of a function y = f(x) at point $x = x_0$
 - c. Differential of y = f(x)
 - d. Rules for differentials
 - e. Estimating error propagation via differentials
 - f. Newton's method for root approximation
 - g. Representative problems: 5, 10, 14, 19, 23, 31, 42, 46
- 4. Section 4.1
 - a. Absolute max and min on closed bounded interval
 - b. Relative max and min
 - c. Critical points f: where f'(c) = 0 or f'(c) does not exist
 - d. Theorem 4.2: If f has a relative extrema at c, then c is a critical point of f
 - e. Procedure for finding absolute extrema
 - f. Optimization (applications of finding extrema to problems)
 - g. Representative problems: 3, 6, 13, 18, 22, 30, 37, 41, 52
- 5. Section 4.2
 - a. Mean Value Theorem
 - b. Rolle's Theorem
 - c. Zero Derivative Theorem: If f'(x) = 0 for all x, then f(x) =constant
 - d. Constant Difference Theorem: If f'(x) = g'(x) for all x, then f(x) = g(x) + constant
 - e. Representative problems: 4, 10, 24, 27, 31
- 6. Section 4.3
 - a. Graph of a function y = f(x) increasing (decreasing) on an interval (a,b)
 - b. Monotone Function Theorem: If f'(x) > 0 on (a,b), then y = f(x) is increasing on (a,b)
 - c. First-derivative test for relative extrema
 - d. Procedure (first-derivative) for sketching the graph of y = f(x)
 - e. Representative problems: 3, 4, 13, 18, 19, 24, 34, 46-48

- 7. Section 4.4
 - a. Graph of a function y = f(x) concave up (concave down) on an interval (a,b)
 - b. Inflection point: Point on the graph across which there is a change in concavity
 - c. Second order critical points of a function y = f(x)
 - d. Second-derivative test for relative extrema
 - e. Procedure (using first- and second-derivative information) for sketching the graph of y = f (x)
 - f. Representative problems: 6, 9, 15, 18, 22, 30, 39-41

8. Section 4.5

a. Limits to infinity: $\lim_{x \le 4} f(x) \stackrel{!}{} L$

i.
$$\lim_{x \in 4} \frac{1}{x} = 0$$

- b. Algebra of limits
- c. Infinite limits: $\lim f(x) 4$
 - x 6 c
- d. Asymptotes
 - i. Vertical
 - ii. Horizontal
 - iii. Slant (Oblique)
- e. Curve sketching (Procedure Outlined in Table 4.2)
- f. Representative problems: 5, 8, 11, 14, 19, 23, 27, 29, 39, 43

9. Section 4.6

- a. Optimization procedure (Page 273)
- b. Geometry, physical sciences, engineering problems
- c. Representative problems: 3, 6, 8, 13, 16, 20, 21, 26

10. Section 4.7

- a. Business, economics, life sciences problems
 - i. Maximum profit
 - ii. Inventory problems
- b. Representative problems: 1, 5, 6, 9, 14, 21, 23, 25, 30, 32
- 11. Section 4.8
 - a. Indeterminant forms: $\frac{0}{0}$, $\frac{4}{4}$
 - b. l'Hôpital's rule
 - c. Other indeterminant forms: 0° , 4 & 4 , 0° , 1^{4}
 - d. Representative problems: 3, 7, 8 12, 16, 28, 32, 37, 38, 45, 49

12. Section 5.1

- a. Anti-derivatives: reversing differentiation
- b. Anti-derivatives for the same function differ by a constant
- c. (Indefinite) integral notation: $_{m}f(x)dx + F(x) \& C$
- d. Anti-differentiation formulas
 - i. Linearity of anti-differentiation
- e. Representative problems: 5, 12, 15, 18, 22, 23, 28, 29, 41