Math 5362 - Algebraic Number Theory Homework 2

Due in Class - Thursday 5 March 2020

1. For p an odd prime, prove that the discriminant of the cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$ equals $(-1)^{\frac{p-1}{2}} p^{p-2}$.
2. Let $K=\mathbb{Q}(\sqrt[3]{2})$. Let $\alpha=a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2} \in K$ be a general element. Compute
(a) $D(\sqrt[3]{2})$;
(b) $N_{K}(\alpha)$; and
(c) $\operatorname{Tr}_{K}(\alpha)$.
3. Let $\theta=\sqrt[3]{12}$. Show that $\left\{1, \theta, \theta^{2}\right\}$ is not an integral basis for $K=\mathbb{Q}(\theta)$.
4. Determine the minimal polynomial of $2^{\frac{1}{3}}+\omega$ over $\mathbb{Q}\left(2^{\frac{1}{3}}\right)$, where ω is a primitive cube root of unity.
5. Let $I=<7,3+\sqrt{-5}>$ and $J=<7,3-\sqrt{-5}>$ be ideals in $\mathbb{Z}[\sqrt{-5}]$.
(a) Calculate $I J$ and I^{2}; and
(b) Find a fractional ideal M such that $I M=\mathbb{Z}[\sqrt{-5}]$.
