Math 5362 - Algebraic Number Theory Homework 1

 Due in Class - Thursday 13 February 2020

 Due in Class - Thursday 13 February 2020}

1. Prove that

$$
\frac{10^{\frac{2}{3}}-1}{\sqrt{-3}}
$$

is an algebraic integer.
2. Determine for which integers m is

$$
\alpha=\frac{\sqrt{m}+1}{\sqrt{2}}
$$

an algebraic integer.
3. Express the algebraic number

$$
\left(\frac{1+\sqrt{2}}{9}\right)^{\frac{1}{3}}+\left(\frac{1-\sqrt{2}}{9}\right)^{\frac{1}{3}}
$$

as a quotient $\frac{\alpha}{m}$, where $m \in \mathbb{Z}$ and α is an algebraic integer .
4. Determine the minimal polynomial of $\frac{1+i}{\sqrt{2}}$ over
(a) \mathbb{Q};
(b) $\mathbb{Q}(i)$; and
(c) $\mathbb{Q}(\sqrt{2})$.
5. Determine $\alpha \in \mathbb{C}$ such that $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})=\mathbb{Q}(\alpha)$ and prove that $[\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}): \mathbb{Q}]=$ 8.
6. Let $K=\mathbb{Q}(\theta)$ where $\theta^{3}+11 \theta-4=0$. Prove that $\left(\theta^{2}-\theta\right) / 2 \in \mathcal{O}_{K}$.
7. Let $K=\mathbb{Q}(\theta)$ where $\theta^{3}-4 \theta+2=0$. Let $\alpha=\theta+\theta^{2}$. Calculate $D(\alpha)$.

