Math 5362 - Algebraic Number Theory Homework 1

Due in Class - Thursday 13 February 2020

1. Prove that

$$\frac{10^{\frac{2}{3}}-1}{\sqrt{-3}}$$

is an algebraic integer.

2. Determine for which integers m is

$$\alpha = \frac{\sqrt{m} + 1}{\sqrt{2}}$$

an algebraic integer.

3. Express the algebraic number

$$\left(\frac{1+\sqrt{2}}{9}\right)^{\frac{1}{3}} + \left(\frac{1-\sqrt{2}}{9}\right)^{\frac{1}{3}}$$

as a quotient $\frac{\alpha}{m},$ where $m\in\mathbb{Z}$ and α is an algebraic integer .

- 4. Determine the minimal polynomial of $\frac{1+i}{\sqrt{2}}$ over
 - (a) $\mathbb{Q};$
 - (b) $\mathbb{Q}(i)$; and
 - (c) $\mathbb{Q}(\sqrt{2})$.
- 5. Determine $\alpha \in \mathbb{C}$ such that $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) = \mathbb{Q}(\alpha)$ and prove that $[\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) : \mathbb{Q}] = 8$.
- 6. Let $K = \mathbb{Q}(\theta)$ where $\theta^3 + 11\theta 4 = 0$. Prove that $(\theta^2 \theta)/2 \in \mathcal{O}_K$.
- 7. Let $K = \mathbb{Q}(\theta)$ where $\theta^3 4\theta + 2 = 0$. Let $\alpha = \theta + \theta^2$. Calculate $D(\alpha)$.