MATH 5317 Introduction to Modern Algebra Spring 2023
 Homework 5 - Due In Class Friday April 28th

1. Let R be a ring. Prove that $R[x]$ is a ring.
2. For a ring R, prove that a $R[x]$ has zero divisors if and only if R has zero divisors.
3. Determine all units in the following polynomial rings:
(a) $\mathbb{Z}[x]$;
(b) $\mathbb{Q}[x]$;
(c) $\mathbb{Z}_{7}[x]$.
4. Find a zero divisor, if possible, in the following polynomial rings:
(a) $\mathbb{Z}[x]$;
(b) $\mathbb{Z}_{4}[x]$;
(c) $\mathbb{Z}_{7}[x]$.
5. Let $f(x)=x^{6}+3 x^{5}+3 x^{4}+x^{3}+3 x^{2}+3 x+1$ and $g(x)=x^{3}+4$ be polynomials in $\mathbb{Z}_{5}[x]$.
(a) Find the greatest common divisor of $f(x)$ and $g(x)$ in $\mathbb{Z}_{5}[x]$.
(b) Find polynomials $u(x)$ and $v(x)$ also in $\mathbb{Z}_{5}[x]$ such that $\operatorname{gcd}(f(x), g(x))=u(x) f(x)+$ $v(x) g(x)$.
6. Find the remainder on dividing $4 x^{4}+3 x^{3}+2 x^{2}+x$ by $x-\frac{1}{2}$ in $\mathbb{Q}[x]$
7. Let I be the set $I=\{f(x) \in \mathbb{Q}[x] \mid f(i)=f(-i)=0\}$ where $i=\sqrt{-1}$.
(a) Prove that I is an ideal of $\mathbb{Q}[x]$.
(b) Find a polynomial $g(x) \in \mathbb{Q}[x]$ such that $I=<g(x)>$.
